[1] S. Adjerid, J.E. Flaherty, Y.J. Wang: 
A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems. Numer. Math. 65 (1993), 1–21. 
DOI 10.1007/BF01385737 | 
MR 1217436 
[4] J.H. Brandts: 
Superconvergence for triangular order $k=1$ Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods. Appl. Numer. Math. (1996), to appear (accepted). 
MR 1755693 | 
Zbl 0948.65120 
[8] K. Eriksson, C. Johnson: 
Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal. 28 (1991), 43–77. 
DOI 10.1137/0728003 | 
MR 1083324 
[9] K. Eriksson, C. Johnson: 
Adaptive finite element methods for parabolic problems II: Optimal error estimates in $L_{\infty }L_2$ and $L_{\infty }L_{\infty }$. SIAM J. Numer. Anal. 32 (1995), 706–740. 
DOI 10.1137/0732033 | 
MR 1335652 
[10] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems III: Time steps variable in space. Manuscript.
[11] K. Eriksson, C. Johnson: 
Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995), 1729–1749. 
DOI 10.1137/0732078 | 
MR 1360457 
[12] K. Eriksson, C. Johnson: 
Adaptive finite element methods for parabolic problems V: Long-time integration. SIAM J. Numer. Anal. 32 (1995), 1750–1763. 
DOI 10.1137/0732079 | 
MR 1360458 
[13] K. Eriksson, C. Johnson, S. Larsson: 
Adaptive finite element methods for parabolic problems VI: Analytic semigroups. SIAM J. Numer. Anal. 35(4) (1998), 1315–1325. 
DOI 10.1137/S0036142996310216 | 
MR 1620144 
[15] C. Johnson, Y. Nie, V. Thomée: 
An a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27(2) (1990), 277–291. 
DOI 10.1137/0727019 | 
MR 1043607 
[16] M. Křížek, P. Neittaanmäki, R. Stenberg (eds): 
Finite element methods: superconvergence, post-processing and a posteriori estimates. Proc. Conf. Univ. of Jyväskylä, 1996, Lecture Notes in Pure and Applied Mathematics volume 196, Marcel Dekker, New York, 1998. 
MR 1602809 
[17] J. Lawson, M. Berzins, P.M. Dew: 
Balancing space and time errors in the method of lines for parabolic equations. SIAM J. Sci. Stat. Comput. 12(3) (1991), 573–594. 
DOI 10.1137/0912031 | 
MR 1093207 
[21] P.A. Raviart, J.M. Thomas: 
A mixed finite element method for second order elliptic problems. Lecture Notes in Mathematics 606, 1977, pp. 292–315. 
MR 0483555 
[22] A.H. Schatz, V. Thomeé, W.L. Wendland (eds): 
Mathematical Theory of Finite and Boundary Element Methods. Birkhäuser Verlag, Basel, 1990. 
MR 1116555 
[23] V. Thomée: 
Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics 1054, Springer Verlag, New York, 1998. 
MR 0744045