[1] C.  Cercignani: 
Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge, 2000. 
MR 1744523 | 
Zbl 0961.76002 
[3] M. N.  Kogan: Rarefied Gas Dynamics. Plenum Press, New York, 1969.
[4] C.  Cercignani: 
The Boltzmann Equation and its Applications. Springer-Verlag, New York, 1988. 
MR 1313028 | 
Zbl 0646.76001 
[5] J. H.  Ferziger, H. G.  Kaper: Mathematical Theory of Transport Processes in Gases. North Holland, Amsterdam, 1972.
[6] S.  Takata, K.  Aoki: 
The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation. Transport Theory Statist. Phys. 30 (2001), 205–237. 
MR 1848595 
[7] S.  Chapman, T. G.  Cowling: 
The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, 1970. 
MR 0258399 
[10] M.  Groppi, G.  Spiga: 
Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas. J.  Math. Chem. 26 (1999), 197–219. 
DOI 10.1023/A:1019194113816 
[11] I.  Müller, T.  Ruggeri: 
Extended Thermodynamics. Springer-Verlag, New York, 1993. 
MR 1269783 
[12] M.  Bisi, M.  Groppi, G.  Spiga: 
Grad’s distribution functions in the kinetic equations for a chemical reaction. Contin. Mech. Thermodyn. 14 (2002), 207–222. 
DOI 10.1007/s001610100066 | 
MR 1896837 
[13] Handbook of Mathematical Functions. M.  Abramowitz, I. A.  Stegun (eds.), Dover, New York, 1965.
[14] M.  Bisi: Kinetic equations for non-conservative interactions. PhD. Thesis, Università di Milano, 2004, in press.
[15] I.  Samohýl: 
Comparison of classical and rational thermodynamics of reacting fluid mixtures with linear transport properties. Collection Czechoslov. Chem. Commun. 40 (1975), 3421–3435. 
DOI 10.1135/cccc19753421