[1] P.  Cerone, S. S.  Dragomir: 
Midpoint-type rules from an inequalities point of view. In: Handbook of Analytic-Computational Methods in Applied Mathematics, G. A.  Anastassiou (ed.), CRC Press, 2000, pp. 135–200. 
MR 1769925 
[2] P.  Cerone, S. S.  Dragomir: 
New bounds for the three-point rule involving the Riemann-Stieltjes integral. In: Advances in Statistics, Combinatorics and Related Areas, C.  Gulati et al. (eds.), World Scientific, London, 2002, pp. 53–62. 
MR 2063836 
[3] P.  Cerone, S. S.  Dragomir: 
Approximation of the Stieltjes integral and applications in numerical integration. RGMIA Res. Rep. Coll. 6 (2003), Article 10 [Online:  
http://rgmia.vu.edu.au/v6n1.html]
 
[4] S. S.  Dragomir: 
On the Ostrowski’s integral inequality for mappings with bounded variation and applications. Math. Inequal. Appl. 4 (2001), 59–66. 
MR 1809841 | 
Zbl 1016.26017 
[5] S. S.  Dragomir, I.  Fedotov: 
An inequality of Grüss’ type for Riemann-Stieltjes integral and applications for special means. Tamkang J.  Math. 29 (1998), 286–292. 
MR 1648534 
[6] S. S.  Dragomir, I.  Fedotov: 
A Grüss type inequality for mappings of bounded variation and applications to numerical analysis. Nonlinear Funct. Anal. Appl. 6 (2001), 425–438. 
MR 1875552 
[7] S. S.  Dragomir, A.  Kalam: An approximation of the Fourier Sine transform via Grüss type inequalities and applications for electrical circuits. J.  KSIAM 6 (2002), 33–45.
[8] 
Ostrowski Type Inequalities and Applications in Numerical Integration. S. S.  Dragomir, Th. M.  Rassias (eds.), Kluwer Academic Publishers, Dordrecht-Boston-London, 2002. 
MR 1928290 | 
Zbl 0992.26002 
[9] I. N.  Sneddon: 
Fourier Transforms. McGraw-Hill, New York-Toronto-London, 1987. 
MR 0041963