Article
Keywords:
numerical analysis; convection-diffusion problem; boundary layer; uniform convergence
Summary:
For convection-diffusion problems with exponential layers, optimal error estimates for linear finite elements on Shishkin-type meshes are known. We present the first optimal convergence result in an energy norm for a Bakhvalov-type mesh.
References:
                        
[1] A. S. Bakhvalov: 
On the optimization of methods for solving boundary value problems with boundary layers. Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 841–859. (Russian) 
MR 0255066 
[3] M. Dobrowolski: Finite Elemente. University textbook of Würzburg, 1998.
[6] H.-G. Roos, M. Stynes, L.  Tobiska: 
Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems. Springer-Verlag, Berlin, 1996. 
MR 1477665 
[7] W. W. Shaidurov, B. M. Bagaev, and E. D.  Karepova: 
Numerical Methods for Problems with Boundary Layers  II. Nauka, Novosibirsk, 2002. (Russian) 
MR 2029041 
[8] M. Stynes, E.  O’Riordan: 
A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J.  Math. Anal. Appl. 214 (1997), 36–54. 
DOI 10.1006/jmaa.1997.5581 | 
MR 1645503