[2] Brockett R., Clark J.: 
Geometry of the conditional density equation. In: Proceedings of the International Conference on Analysis and Optimization of Stochastic Systems, Oxford 1978 
Zbl 0496.93049 
[3] Charalambous C.: 
Partially observable nonlinear risk-sensitive control problems: Dynamic programming and verification theorems. IEEE Trans. Automat. Control, to appear 
MR 1469073 | 
Zbl 0886.93070 
[4] Charalambous C., Elliott R.: 
Certain nonlinear stochastic optimal control problems with explicit control laws equivalent to LEQG/LQG problems. IEEE Trans. Automat. Control 42 (1997), 4. 482–497 
DOI 10.1109/9.566658 | 
MR 1442583 
[5] Charalambous C., Hibey J.: 
Minimum principle for partially observable nonlinear risk-sensitive control problems using measure-valued decompositions. Stochastics and Stochastics Reports 57 (1996), 2, 247–288 
DOI 10.1080/17442509608834063 | 
MR 1425368 | 
Zbl 0891.93084 
[6] Charalambous C., Naidu D., Moore K.: Solvable risk-sensitive control problems with output feedback. In: Proceedings of 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 1433–1434
[7] Chen J., Yau S.-T., Leung C.-W.: 
Finite-dimensional filters with nonlinear drift IV: Classification of finite-dimensional estimation algebras of maximal rank with state-space dimension $3$. SIAM J. Control Optim. 34 (1996), 1, 179–198 
DOI 10.1137/S0363012993251316 | 
MR 1372910 | 
Zbl 0847.93062 
[8] Hazewinkel M., Willems J.: 
Stochastic systems: The mathematics of filtering and identification, and applications. In: Proceedings of the NATO Advanced Study Institute, D. Reidel, Dordrecht 1981 
MR 0674319 | 
Zbl 0486.00016