| Title:
             | 
The cancellation law for pseudo-convolution (English) | 
| Author:
             | 
Stupňanová, Andrea | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 | 
| Volume:
             | 
41 | 
| Issue:
             | 
3 | 
| Year:
             | 
2005 | 
| Pages:
             | 
[285]-296 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Cancellation law for pseudo-convolutions based on triangular norms is discussed. In more details, the cases of extremal t-norms $T_M$ and $T_D$, of continuous Archimedean t-norms, and of general continuous t-norms are investigated. Several examples are included. (English) | 
| Keyword:
             | 
cancellation law | 
| Keyword:
             | 
t-norm | 
| Keyword:
             | 
pseudo-convolution | 
| MSC:
             | 
03E72 | 
| MSC:
             | 
28E10 | 
| idZBL:
             | 
Zbl 1249.03103 | 
| idMR:
             | 
MR2181419 | 
| . | 
| Date available:
             | 
2009-09-24T20:08:53Z | 
| Last updated:
             | 
2015-03-23 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/135656 | 
| . | 
| Reference:
             | 
[1] Baets B. De, Marková-Stupňanová A.: Analytical expressions for the addition of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 203–213 Zbl 0919.04005, MR 1480046, 10.1016/S0165-0114(97)00141-3 | 
| Reference:
             | 
[2] Golan J. S.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Sciences.(Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 54.) Longman, New York 1992 MR 1163371 | 
| Reference:
             | 
[3] Klement E.-P., Mesiar, R., Pap E.: Problems on triangular norms and related operators.Fuzzy Sets and Systems 145 (2004), 471–479 Zbl 1050.03019, MR 2075842 | 
| Reference:
             | 
[4] Klement E.-P., Mesiar, R., Pap E.: Triangular Norms.(Trends in Logic, Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dortrecht 2000 Zbl 1087.20041, MR 1790096 | 
| Reference:
             | 
[5] Mareš M.: Computation Over Fuzzy Quantities.CRC Press, Boca Raton 1994 Zbl 0859.94035, MR 1327525 | 
| Reference:
             | 
[6] Marková A.: T-sum of L-R fuzzy numbers.Fuzzy Sets and Systems 85  (1997), 379–384 MR 1428314, 10.1016/0165-0114(95)00370-3 | 
| Reference:
             | 
[7] Marková-Stupňanová A.: A note on the idempotent functions with respect to pseudo-convolution.Fuzzy Sets and Systems 102 (1999), 417–421 Zbl 0953.28012, MR 1676908 | 
| Reference:
             | 
[8] Mesiar R.: Shape preserving additions of fuzzy intervals.Fuzzy Sets and Systems 86  (1997), 73–78 Zbl 0921.04002, MR 1438439, 10.1016/0165-0114(95)00401-7 | 
| Reference:
             | 
[9] Mesiar R.: Triangular-norm-based addition of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 231–237 Zbl 0919.04011, MR 1480048, 10.1016/S0165-0114(97)00143-7 | 
| Reference:
             | 
[10] Moynihan R.: On the class of $\tau _T$ semigroups of probability distribution functions.Aequationes Math. 12 (1975), 2/3, 249–261 Zbl 0309.60013, MR 0383496, 10.1007/BF01836553 | 
| Reference:
             | 
[11] Murofushi T., Sugeno M. : Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral.Fuzzy Sets and Systems 42 (1991), 51–57 MR 1123577 | 
| Reference:
             | 
[12] Pap E.: Decomposable measures and nonlinear equations.Fuzzy Sets and Systems 92 (1997), 205–221 Zbl 0934.28015, MR 1486420, 10.1016/S0165-0114(97)00171-1 | 
| Reference:
             | 
[13] Pap E.: Null-Additive Set Functions.Ister Science & Kluwer Academic Publishers, Dordrecht 1995 Zbl 1003.28012, MR 1368630 | 
| Reference:
             | 
[14] Pap E., Štajner I.: Pseudo-convolution in the theory of optimalization, probabilistic metric spaces, information, fuzzy numbers, system theory.In: Proc. IFSA’97, Praha 1997, pp. 491–495 | 
| Reference:
             | 
[15] Pap E., Štajner I.: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, system theory.Fuzzy Sets and Systems 102 (1999), 393–415 MR 1676907 | 
| Reference:
             | 
[16] Pap E., Teofanov N.: Pseudo-delta sequences.Yugoslav. J. Oper. Res. 8 (1998), 111–128 MR 1621522 | 
| Reference:
             | 
[17] Riedel T.: On $\sup $-continuous triangle functions.J. Math. Anal. Appl. 184 (1994), 382–388 Zbl 0802.60022, MR 1278396, 10.1006/jmaa.1994.1207 | 
| Reference:
             | 
[18] Sugeno M. , Murofushi T.: Pseudo-additive measures and integrals.J. Math. Anal. Appl. 122 (1987), 197– 222 Zbl 0611.28010, MR 0874969, 10.1016/0022-247X(87)90354-4 | 
| Reference:
             | 
[19] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York 1992 Zbl 0812.28010, MR 1212086 | 
| Reference:
             | 
[20] Zagrodny D.: The cancellation law for inf-convolution of convex functions.Studia Mathematika 110 (1994), 3, 271–282 Zbl 0811.49012, MR 1292848 | 
| . |