Previous |  Up |  Next

Article

Title: Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra (English)
Author: Wang, Dengyin
Author: Pan, Haishan
Author: Wang, Xuansheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 371-379
Summary lang: English
.
Category: math
.
Summary: Let $\Cal P$ be an arbitrary parabolic subalgebra of a simple associative $F$-algebra. The ideals of $\Cal P$ are determined completely; Each ideal of $\Cal P$ is shown to be generated by one element; Every non-linear invertible map on $\Cal P$ that preserves ideals is described in an explicit formula. (English)
Keyword: simple associative $F$-algebra
Keyword: ideals
Keyword: maps preserving ideals
MSC: 15A04
MSC: 15A27
MSC: 16D25
MSC: 16S50
idZBL: Zbl 1224.15005
idMR: MR2657955
.
Date available: 2010-07-20T16:44:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140575
.
Reference: [1] Orsina, L., Papi, P: Enumeration of ad-nilpotent ideals of a Borel subalgebra in type A by class of nilpotence.C. R. Acad. Sci, Paris 330 (2000), 651-655. Zbl 0984.17003, MR 1763905, 10.1016/S0764-4442(00)00253-6
Reference: [2] Panyushev, D.: Ad-nilpotent ideals of a Borel subalgebra: generators and duality.J. Algebra 274 (2004), 822-846. Zbl 1067.17005, MR 2043377, 10.1016/j.jalgebra.2003.09.007
Reference: [3] Panyushev, D.: Long Abelian ideals.Advances in Mathematics 186 (2004), 307-316. Zbl 1052.17002, MR 2073908, 10.1016/j.aim.2003.08.006
Reference: [4] Panyushev, D., Röhrle, G.: Spherical orbits and Abelian ideals.Advances in Mathematics 159 (2001), 229-246. MR 1825058, 10.1006/aima.2000.1959
Reference: [5] Cellini, P., Papi, P.: Abelian ideals of Borel subalgebras and affine Weyl groups.Advances in Mathematics 187 (2004), 320-361. Zbl 1112.17011, MR 2078340, 10.1016/j.aim.2003.08.011
Reference: [6] Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra.J. Algebra 225 (2000), 130-141. Zbl 0951.17003, MR 1743654, 10.1006/jabr.1999.8099
Reference: [7] Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra II.J. Algebra 258 (2002), 112-121. Zbl 1033.17008, MR 1958899, 10.1016/S0021-8693(02)00532-X
Reference: [8] Krattenthaler, C., Orsina, L., Papi, P.: Enumeration of ad-nilpotent $\frak{b}$-ideals for simple Lie algebras.Advances in Applied Mathematics 28 (2002), 478-522. MR 1900005, 10.1006/aama.2001.0792
Reference: [9] Righi, Céline: Ad-nilpotent ideals of a parabolic subalgebra.J. Algebra 319 (2008), 1555-1584. MR 2383058, 10.1016/j.jalgebra.2007.11.005
Reference: [10] Panyushev, D.: Normalizers of ad-nilpotent ideals.European Journal of Combinatorics 27 (2006), 153-178. Zbl 1091.17007, MR 2199771, 10.1016/j.ejc.2004.10.002
Reference: [11] Radjavi, H., Šemrl, P.: Non-linear maps preserving solvability.J. Algebra 280 (2004), 624-634. MR 2089255, 10.1016/j.jalgebra.2004.06.016
.

Files

Files Size Format View
CzechMathJ_60-2010-2_6.pdf 258.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo