| Title:
             | 
Li-Yorke pairs of full Hausdorff dimension for some chaotic dynamical systems (English) | 
| Author:
             | 
Neunhäuserer, J. | 
| Language:
             | 
English | 
| Journal:
             | 
Mathematica Bohemica | 
| ISSN:
             | 
0862-7959 (print) | 
| ISSN:
             | 
2464-7136 (online) | 
| Volume:
             | 
135 | 
| Issue:
             | 
3 | 
| Year:
             | 
2010 | 
| Pages:
             | 
279-289 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We show that for some simple classical chaotic dynamical systems the set of Li-Yorke pairs has full Hausdorff dimension on invariant sets. (English) | 
| Keyword:
             | 
Li-Yorke chaos | 
| Keyword:
             | 
Hausdorff dimension | 
| MSC:
             | 
37B05 | 
| MSC:
             | 
37C45 | 
| idZBL:
             | 
Zbl 1224.37011 | 
| idMR:
             | 
MR2683639 | 
| DOI:
             | 
10.21136/MB.2010.140704 | 
| . | 
| Date available:
             | 
2010-07-20T18:44:58Z | 
| Last updated:
             | 
2020-07-29 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/140704 | 
| . | 
| Reference:
             | 
[1] Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li-Yorke pairs.J. Reine Angew. Math. 547 51-68 (2002). Zbl 1059.37006, MR 1900136 | 
| Reference:
             | 
[2] Blanchard, F., Huang, W., Snoah, L.: Topological size of scrambled sets.Colloquium Mathematicum 110 293-361 (2008). MR 2353910, 10.4064/cm110-2-3 | 
| Reference:
             | 
[3] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications.Wiley, New York (1990). Zbl 0689.28003, MR 1102677 | 
| Reference:
             | 
[4] Hutchinson, J. E.: Fractals and self-similarity.Indiana Univ. Math. J. 30 271-280 (1981). Zbl 0598.28011, MR 0625600, 10.1512/iumj.1981.30.30055 | 
| Reference:
             | 
[5] Katok, A., Hasselblatt, B.: Introduction to Modern Theory of Dynamical Systems.Cambridge University Press (1995). MR 1326374 | 
| Reference:
             | 
[6] Li, T.-Y., Yorke, J. A.: Period three implies chaos.Amer. Math. Monthly 82 985-992 (1975). Zbl 0351.92021, MR 0385028, 10.2307/2318254 | 
| Reference:
             | 
[7] Marstrand, J. M.: The dimension of Cartesian product sets.Proc. Camb. Philos. Soc. 50 198-202 (1954). Zbl 0055.05102, MR 0060571, 10.1017/S0305004100029236 | 
| Reference:
             | 
[8] Moran, P.: Additive functions of intervals and Hausdorff measure.Proc. Cambridge Philos. Soc. 42 15-23 (1946). Zbl 0063.04088, MR 0014397 | 
| Reference:
             | 
[9] Neunhäuserer, J.: Dimension theoretical properties of generalized Baker's transformations.Nonlinearity 15 1299-1307 (2002). Zbl 1148.37300, MR 1912296, 10.1088/0951-7715/15/4/315 | 
| Reference:
             | 
[10] Neunhäuserer, J.: Dimension Theory for Linear Solenoids.Fractals 15 63-72 (2007). MR 2281945, 10.1142/S0218348X07003423 | 
| Reference:
             | 
[11] Pesin, Ya.: Dimension Theory in Dynamical Systems---Contemplary Views and Applications.University of Chicago Press (1997). MR 1489237 | 
| Reference:
             | 
[12] Smale, S.: Differentiable dynamical systems.Bull. Amer. Math. Soc. 73 747-817 (1967). Zbl 0202.55202, MR 0228014, 10.1090/S0002-9904-1967-11798-1 | 
| Reference:
             | 
[13] Young, L.-S.: Dimension, entropy and Lyapunov exponents.Ergodic Theory Dyn. Syst. 2 109-124 (1982). Zbl 0523.58024, MR 0684248 | 
| . |