Article
Keywords:
$t$-tough graph; Laplacian matrix; adjacent matrix; eigenvalues
Summary:
We give some algebraic conditions for $t$-tough graphs in terms of the Laplacian eigenvalues and adjacency eigenvalues of graphs.
References:
                        
[1] Brouwer, A. E.: 
Toughness and spectrum of a graph. Linear Algebra Appl. 226-228 (1995), 267-271. 
MR 1344566 | 
Zbl 0833.05048 
[2] Brouwer, A. E., Haemers, W. H.: 
Eigenvalues and perfect matchings. Linear Algebra Appl. 395 (2005), 155-162. 
MR 2112881 | 
Zbl 1056.05097 
[3] Chvátal, V.: 
New directions in Hamiltonian graph theory in New Directions in the Theory of Graphs. F. Harary Academic Press, New York (1973), 65-95. 
MR 0357221 
[6] Haemers, W. H.: 
Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. 
MR 1344588 | 
Zbl 0831.05044 
[7] Jung, H. A.: 
Note on Hamiltonian graphs, in Recent Advances in Graph Theory. M. Fiedler Academia, Prague (1975), 315-321. 
MR 0392692 
[9] Heuvel, J. Vanden: 
Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730. 
MR 1344594