| Title:
             | 
Šarkovského věta a diferenciální rovnice (Czech) | 
| Title:
             | 
Sharkovkii theorem and differential equations (English) | 
| Author:
             | 
Andres, Jan | 
| Language:
             | 
Czech | 
| Journal:
             | 
Pokroky matematiky, fyziky a astronomie | 
| ISSN:
             | 
0032-2423 | 
| Volume:
             | 
49 | 
| Issue:
             | 
2 | 
| Year:
             | 
2004 | 
| Pages:
             | 
151-159 | 
| . | 
| Category:
             | 
math | 
| . | 
| Keyword:
             | 
Sharkovkii theorem | 
| Keyword:
             | 
first order nonlinear differential equations | 
| MSC:
             | 
34C25 | 
| MSC:
             | 
37C10 | 
| MSC:
             | 
37E15 | 
| MSC:
             | 
39A99 | 
| MSC:
             | 
58F20 | 
| idZBL:
             | 
Zbl 1265.37016 | 
| . | 
| Date available:
             | 
2010-12-11T20:28:38Z | 
| Last updated:
             | 
2015-11-29 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/141221 | 
| . | 
| Related article:
             | 
http://dml.cz/handle/10338.dmlcz/147803 | 
| Related article:
             | 
http://dml.cz/handle/10338.dmlcz/141710 | 
| . | 
| Reference:
             | 
[A1] Andres, J.: Nielsen number, Artin braids, Poincaré operators and multiple nonlinear oscillations.Nonlin. Anal. 47, 2 (2001), 1017–1028. Zbl 1042.37506, MR 1970714, 10.1016/S0362-546X(01)00242-5 | 
| Reference:
             | 
[A2] Andres, J.: Period three implications for expansive maps in ${\mathbb {R}}^n$.J. Difference Eqns 10, 1 (2004), 17–28. MR 2033331, 10.1080/1023619031000114314 | 
| Reference:
             | 
[AFJ] Andres, J., Fišer, J., Jüttner, L.: On a multivalued version of the Sharkovskii theorem and its application to differential inclusions.Set-Valued Anal. 10, 1 (2002), 1–14. Zbl 1082.37048, MR 1888453, 10.1023/A:1014488216807 | 
| Reference:
             | 
[AG] Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems.Kluwer, Dordrecht 2003. Zbl 1029.55002, MR 1998968 | 
| Reference:
             | 
[AJ] Andres, J., Jüttner, L.: Period three plays a negative role in a multivalued version of Sharkovskii’s theorem.Nonlin. Anal. 51 (2002), 1101–1104. Zbl 1015.37032, MR 1926088, 10.1016/S0362-546X(01)00876-8 | 
| Reference:
             | 
[AJP] Andres, J., Jüttner, L., Pastor, K.: On a multivalued version of the Sharkovskii theorem and its application to differential inclusions II.Set-Valued Anal. (v tisku). MR 2128697 | 
| Reference:
             | 
[AP1] Andres, J., Pastor, K.: On a multivalued version of the Sharkovskii theorem and its application to differential inclusions III.Topol. Meth. Nonlin. Anal. 22 (2003), 369–386. Zbl 1059.47057, MR 2036383 | 
| Reference:
             | 
[AP2] Andres, J., Pastor, K.: A version of Sharkovskii’s theorem for differential equations.Proc. Amer. Math. Soc. (v tisku). Zbl 1063.34030, MR 2093067 | 
| Reference:
             | 
[B] Boyland, P.: An analog of Sharkovski’s theorem for twist maps.Contemp. Math., vol. 81, Amer. Math. Soc., Providence, R. I., 1988, 119–133. Zbl 0677.58039, MR 0986261, 10.1090/conm/081/986261 | 
| Reference:
             | 
[BB] Barton, R., Burns, K.: A simple special case of Sharkovskii’s theorem.Amer. Math. Monthly 107, 10 (2000), 932–933. Zbl 0979.37016, MR 1807003 | 
| Reference:
             | 
[BK] Bobok, J., Kuchta, M.: X-minimal patterns and generalization of Sharkovskii’s theorem.Fund. Math. 156 (1998), 33–66. MR 1610555 | 
| Reference:
             | 
[F] Filippov, A. F.: Differenciaľnyje uravnenija s razryvnoj pravoj častju.Nauka, Moskva, 1985. | 
| Reference:
             | 
[G] Gleick, J.: Chaos.Ando Publ., Praha 1996. | 
| Reference:
             | 
[H] Handel, M.: The forcing partial order on three times punctured disk.Ergod. Th. Dynam. Sys. 17 (1997), 593–610. MR 1452182, 10.1017/S0143385797084940 | 
| Reference:
             | 
[Ka] Kampen, J.: On fixed points of maps and iterated maps and applications.Nonlin. Anal. 42 (2000), 509–532. Zbl 0967.37014, MR 1775390, 10.1016/S0362-546X(99)00111-X | 
| Reference:
             | 
[KH] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory Dynamical Systems.Cambridge Univ. Press, Cambridge 1995. MR 1326374 | 
| Reference:
             | 
[Kl] Kloeden, P. E.: On Sharkovsky’s cycle coexisting ordering.Bull. Austral. Math. Soc. 20 (1979), 171–177. MR 0557223, 10.1017/S0004972700010819 | 
| Reference:
             | 
[Kr] Krasnoseľskij, M. A.: Operator sdviga po trajektoriam differenciaľnych uravnenij.Nauka, Moskva 1966. | 
| Reference:
             | 
[KSS] Kannan, V., Saradhi, P. V. S. P., Seshasai, S. P.: A generalization of Sharkovskii theorem to higher dimensions.J. Nat. Acad. Math. India (Special volume to dedicate Prof. Dr. R. S. Mishra on the occasion of his 80th birthday), 11 (1995), 69–82. | 
| Reference:
             | 
[LY] Li, T.-Y., Yorke, J.: Period three implies chaos.Amer. Math. Monthly 82 (1975), 985–992. Zbl 0351.92021, MR 0385028, 10.2307/2318254 | 
| Reference:
             | 
[M1] Matsuoka, T.: The number and linking of periodic systems.Invent. Math. 70 (1983), 319–340. MR 0683687, 10.1007/BF01391795 | 
| Reference:
             | 
[M2] Matsuoka, T.: Braids of periodic points and a $2$-dimensional analogue of Sharkovskii’s ordering.In: Dynamical Systems and Nonlinear Oscillations (G. Ikegami, ed.), World Sci. Press, Singapore 1986, 58–72. MR 0854304 | 
| Reference:
             | 
[O] Orlicz, W.: Zur Theorie der Differentialgleichung ${y^{\prime }=f(x,y)}$.Bull. Akad. Polon. Sci., Sér. A, 00 (1932), 221–228. | 
| Reference:
             | 
[P] Pliss, V. A.: Nelokaľnyje problemy teorii kolebanij.Nauka, Moskva 1964. MR 0171962 | 
| Reference:
             | 
[R] Robinson, C.: Dynamical Systems.CRC Press, Boca Raton, Fl. 1995. Zbl 0853.58001, MR 1396532 | 
| Reference:
             | 
[S] Schirmer, H.: A topologist’s view of Sharkovsky’s theorem.Houston J. Math. 11, 3 (1985), 385–395. Zbl 0606.54031, MR 0808654 | 
| Reference:
             | 
[Š] Šarkovskij, A. N.: Sosuščestvovanije ciklov nepreryvnogo otobraženija v sebja.Ukrain. Matem. Žurn. 1 (1964), 61–71. | 
| Reference:
             | 
[Y] Ye, X.: D-function of a minimal set and an extension of Sharkovskii’s theorem to minimal sets.Ergod. Th. Dynam. Sys. 12 (1992), 365–376. Zbl 0738.54019, MR 1176630 | 
| Reference:
             | 
[Z1] Zgliczynski, P.: Sharkovskii theorem for multidimensional perturbations of oned̄imensional maps I, II.Ergod. Th. Dynam. Sys. 19, 6 (1999), 1655–1684; Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169–182. 10.1017/S0143385799141749 | 
| Reference:
             | 
[Z2] Zgliczynski, P.: Multidimensional perturbations of one-dimensional maps and stability of Šarkovskii ordering.Internat. J. Bifurc. Chaos 9, 9 (1999), 1867–1876. Zbl 1089.37502, MR 1728745, 10.1142/S0218127499001346 | 
| . |