Previous |  Up |  Next

Article

Keywords:
content algebra; few zero-divisors; McCoy’s property; minimal prime; property (A); primal ring; zero-divisor graph
Summary:
In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.
References:
[1] Anderson, D. D., Kan, B. G.: Content formulas for polynomials and power series and complete integral closure. J. Algebra 181 (1996), 82–94. DOI 10.1006/jabr.1996.0110 | MR 1382027
[2] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434–447. DOI 10.1006/jabr.1998.7840 | MR 1700509 | Zbl 0941.05062
[3] Arnold, J. T., Gilmer, R.: On the content of polynomials. Proc. Amer. Math. Soc. 40 (1970), 556–562. DOI 10.1090/S0002-9939-1970-0252360-3 | MR 0252360
[4] Axtell, M., Coykendall, J., Stickles, J.: Zero-divisor graphs of polynomials and power series over commutative rings. Comm. Algebra 6 (2005), 2043–2050. DOI 10.1081/AGB-200063357 | MR 2150859 | Zbl 1088.13006
[5] Bruns, W., Guerrieri, A.: The Dedekind-Mertens formula and determinantal rings. Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. DOI 10.1090/S0002-9939-99-04535-9 | MR 1468185 | Zbl 0915.13008
[6] Dauns, J.: Primal modules. Comm. Algebra 25 (8) (1997), 2409–2435. DOI 10.1080/00927879708825998 | MR 1459569 | Zbl 0882.16001
[7] Davis, E.: Overrings of commutative rings II. Integrally closed overrings. Trans. Amer. Math. Soc. 110 (1964), 196–212. DOI 10.1090/S0002-9947-1964-0156868-2 | MR 0156868 | Zbl 0128.26005
[8] Eakin, P., Silver, J.: Rings which are almost polynomial rings. Trans. Amer. Math. Soc. 174 (1974), 425–449. DOI 10.1090/S0002-9947-1972-0309924-4 | MR 0309924
[9] Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York, 1972. MR 0427289 | Zbl 0248.13001
[10] Gilmer, R.: Commutative Semigroup Rings. The University of Chicago Press, 1984. MR 0741678 | Zbl 0566.20050
[11] Heinzer, W., Huneke, C.: The Dedekind-Mertens Lemma and the content of polynomials. Proc. Amer. Math. Soc. 126 (1998), 1305–1309. DOI 10.1090/S0002-9939-98-04165-3 | MR 1425124
[12] Huckaba, J. A.: Commutative Rings with Zero Divisors. Marcel Dekker, 1988. MR 0938741 | Zbl 0637.13001
[13] Huckaba, J. A., Keller, J. M.: Annihilation of ideals in commutative rings. Pacific J. Math. 83 (1979), 375–379. DOI 10.2140/pjm.1979.83.375 | MR 0557938 | Zbl 0388.13001
[14] Kaplansky, I.: Commutative Rings. Allyn and Bacon, Boston, 1970. MR 0254021 | Zbl 0203.34601
[15] Loper, K. A., Roitman, M.: The content of a Gaussian polynomial is invertible. Proc. Amer. Math. Soc. 133 (2005), 1267–1271. DOI 10.1090/S0002-9939-04-07826-8 | MR 2111931 | Zbl 1137.13301
[16] Lucas, T. G.: The diameter of a zero divisor graph. J. Algebra 301 (2006), 174–193. DOI 10.1016/j.jalgebra.2006.01.019 | MR 2230326 | Zbl 1109.13006
[17] McCoy, N. H.: Remarks on divisors of zero. Amer. Math. Monthly 49 (1942), 286–29. DOI 10.2307/2303094 | MR 0006150 | Zbl 0060.07703
[18] Northcott, D. G.: A generalization of a theorem on the content of polynomials. Proc. Camb. Philos. Soc. 55 (1959), 282–288. DOI 10.1017/S030500410003406X | MR 0110732 | Zbl 0103.27102
[19] Ohm, J., Rush, D. E.: Content modules and algebras. Math. Scand. 31 (1972), 49–68. MR 0344289 | Zbl 0248.13013
[20] Rush, D. E.: Content algebras. Canad. Math. Bull. 21 (3) (1978), 329–334. DOI 10.4153/CMB-1978-057-8 | MR 0511581 | Zbl 0441.13005
[21] Tsang, H.: Gauss’ Lemma. University of Chicago, Chicago, 1965, dissertation. MR 2611536
[22] Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York, 1958. MR 0090581 | Zbl 0081.26501
Partner of
EuDML logo