Previous |  Up |  Next

Article

Keywords:
Fischer decomposition; Clifford analysis
Summary:
Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline{\partial }$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline{\partial }_J$, leading to the system of equations $\underline{\partial } f = 0 = \underline{\partial }_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.
References:
[1] Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis – Part I: Complex structure. Compl. Anal. Oper. Theory 1 (3) (2007), 341–365. DOI 10.1007/s11785-007-0010-5 | MR 2336028
[2] Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis – Part II: Splitting of $h$–monogenic equations. Complex Var. Elliptic Equ. 52 (10–11) (2007), 1063–1079. MR 2374972
[3] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publishers, 1982. MR 0697564 | Zbl 0529.30001
[4] Brackx, F., Delanghe, R., Sommen, F.: Differential forms and$/$or multi–vector functions. Cubo 7 (2) (2005), 139–169. MR 2186030 | Zbl 1105.58002
[5] Brackx, F., Knock, B. De, Schepper, H. De: A matrix Hilbert transform in Hermitean Clifford analysis. J. Math. Anal. Appl. 344 (2) (2008), 1068–1078. DOI 10.1016/j.jmaa.2008.03.043 | MR 2426334 | Zbl 1148.44004
[6] Brackx, F., Knock, B. De, Schepper, H. De, Sommen, F.: On Cauchy and Martinelli–Bochner integral formulae in Hermitean Clifford analysis. Bull. Braz. Math. Soc. (N.S.) 40 (3) (2009), 395–416. DOI 10.1007/s00574-009-0018-8 | MR 2540516 | Zbl 1182.30081
[7] Brackx, F., Schepper, H. De, Eelbode, D., Souček, V.: The Howe dual pair in Hermitean Clifford analysis. Rev. Mat. Iberoamericana 26 (2) (2010), 449–479. DOI 10.4171/RMI/606 | MR 2677004 | Zbl 1201.30061
[8] Brackx, F., Schepper, H. De, Schepper, N. De, Sommen, F.: Hermitean Clifford–Hermite polynomials. Adv. Appl. Clifford Algebras 17 (3) (2007), 311–330. DOI 10.1007/s00006-007-0032-0 | MR 2350582 | Zbl 1134.30039
[9] Brackx, F., Schepper, H. De, Sommen, F.: A theoretical framework for wavelet analysis in a Hermitean Clifford setting. Commun. Pure Appl. Anal. 6 (3) (2007), 549–567. DOI 10.3934/cpaa.2007.6.549 | MR 2318288 | Zbl 1149.30036
[10] Brackx, F., Schepper, H. De, Sommen, F.: The Hermitian Clifford analysis toolbox. Adv. Appl. Clifford Algebras 18 (3–4) (2008), 451–487. DOI 10.1007/s00006-008-0081-z | MR 2490567 | Zbl 1177.30064
[11] Brackx, F., Schepper, H. De, Souček, V.: On the structure of complex Clifford algebra. accepted for publication in Adv. Appl. Clifford Algebras.
[12] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac systems and computational algebra. Birkhäuser, Boston, 2004. MR 2089988 | Zbl 1064.30049
[13] Damiano, A., Eelbode, D.: Invariant operators between spaces of $h$–monogenic polynomials. Adv. Appl. Clifford Algebras 19 (2) (2009), 237–251. DOI 10.1007/s00006-009-0155-6 | MR 2524668 | Zbl 1177.22008
[14] Delanghe, R., Lávička, R., Souček, V.: The Fischer decomposition for Hodge–de Rham Systems in Euclidean space. to appear.
[15] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor–valued functions – A function theory for the Dirac operator. Kluwer Academic Publishers, Dordrecht, 1992. MR 1169463
[16] Eelbode, D.: Stirling numbers and Spin–Euler polynomials. Experiment. Math. 16 (1) (2007), 55–66. DOI 10.1080/10586458.2007.10128982 | MR 2312977 | Zbl 1201.30064
[17] Eelbode, D.: Irreducible $\mathfrak{sl}(m)$–modules of Hermitean monogenics. Complex Var. Elliptic Equ. 53 (10) (2008), 975–987. DOI 10.1080/17476930802331956 | MR 2453891
[18] Eelbode, D., He, F. L.: Taylor series in Hermitean Clifford analysis. Compl. Anal. Oper. Theory. DOI 10.1007/s11785-009-0036-y | MR 2773058
[19] Fischer, E.: Über die Differentiationsprozesse der Algebra. J. für Math. 148 (1917), 1–78.
[20] Gilbert, J., Murray, M.: Clifford Algebra and Dirac Operators in Harmonic Analysis. Cambridge University Press, 1991. MR 1130821
[21] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups. Cambridge University Press, 2003. MR 1606831
[22] Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. J. Wiley & Sons, Chichester, 1997.
[23] Rocha–Chavez, R., Shapiro, M., Sommen, F.: Integral theorems for functions and differential forms in ${\mathbb{C}}_m$. vol. 428, Research Notes in Math., 2002. MR 1889406
[24] Sabadini, I., Sommen, F.: Hermitian Clifford analysis and resolutions. Math. Methods Appl. Sci. 25 (16–18) (2002), 1395–1414. DOI 10.1002/mma.378 | MR 1949504 | Zbl 1013.30033
[25] Sommen, F., Peña, D. Peña: A Martinelli–Bochner formula for the Hermitian Dirac equation. Math. Methods Appl. Sci. 30 (9) (2007), 1049–1055. DOI 10.1002/mma.824 | MR 2321942 | Zbl 1117.30040
[26] Stein, E. M., Weiss, G.: Generalization of the Cauchy–Riemann equations and representations of the rotation group. Amer. J. Math. 90 (1968), 163–196. DOI 10.2307/2373431 | MR 0223492 | Zbl 0157.18303
Partner of
EuDML logo