[1] Andrijevic, D.: 
Some properties of the topology of $\alpha$-sets. Mat. Vesn. 36 (1984), 1-10. 
MR 0880637 | 
Zbl 0546.54003 
[2] Carnahan, D.: 
Some properties related to compactness in topological spaces. Ph.D. Thesis, Univ. of Arkansas (1973). 
MR 2623205 
[3] Devi, R., Balachandran, K., Maki, H.: On generalized $\alpha$-continuous maps and $\alpha$-generalized continuous maps. Far East J. Math. Sci. (1997), 1-15.
[4] Frolík, Z.: 
Remarks concerning the invariance of Baire spaces under mappings. Czech. Math. J. 11 (1961), 381-385. 
MR 0133098 
[6] Greenwood, S., Reilly, I. L.: 
On feebly closed mappings. Indian J. Pure Appl. Math. 17 (1986), 1101-1105. 
MR 0864149 | 
Zbl 0604.54012 
[7] Jafari, S., Noiri, T., Rajesh, N., Thivagar, M. L.: 
Another generalization of closed sets. Kochi J. Math. 3 (2008), 25-38. 
MR 2408589 | 
Zbl 1148.54304 
[8] Jafari, S., Thivagar, M. L., Paul, Nirmala Rebecca: 
Remarks on $\tilde{g}_{\alpha}$-closed sets in topological spaces. Int. Math. Forum 5 (2010), 1167-1178. 
MR 2652960 | 
Zbl 1207.54030 
[9] Jankovic, D. S., Konstadilaki-Savvopoulou, Ch.: 
On $\alpha$-continuous functions. Math. Bohem. 117 (1992), 259-270. 
MR 1184539 | 
Zbl 0802.54005 
[12] Long, P. E., Herrington, L. L.: 
Basic properties of regular-closed functions. Rend Circ. Mat. Palermo, II. Ser. 27 (1978), 20-28. 
MR 0542230 | 
Zbl 0416.54005 
[13] Maki, H., Devi, R., Balachandran, K.: 
Generalized $\alpha$-closed sets in topology. Bull. Fukuoka Univ. Educ., Part III 42 (1993), 13-21. 
Zbl 0888.54005 
[14] Maki, H., Devi, R., Balachandran, K.: 
Associated topologies of generalized $\alpha$-closed sets and $\alpha$-generalized closed sets. Mem. Fac. Sci., Kochi Univ., Ser. A 15 (1994), 51-63. 
MR 1262966 | 
Zbl 0821.54002 
[15] Maki, H., Rao, K. Chandrasekhara, Gani, A. Nagoor: 
On generalizing semi-open and preopen sets. Pure Appl. Math. Sci. 49 (1999), 17-29. 
MR 1696955 
[19] Min, W. K., Kim, Y. K.: On weak $M$-semicontinuity on spaces with minimal structures. J. Chungcheong Math. Soc. 23 (2010), 223-229.
[21] Noiri, T.: 
Almost-closed images of countably paracompact spaces. Commentat. Math. 20 (1978), 423-426. 
MR 0519378 | 
Zbl 0398.54007 
[22] Noiri, T.: 
Mildly normal spaces and some functions. Kyungpook Math. J. 36 (1996), 183-190. 
MR 1396023 | 
Zbl 0873.54016 
[24] Noiri, T., Popa, V.: 
A unified theory of closed functions. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49 (2006), 371-382. 
MR 2281517 | 
Zbl 1119.54304 
[25] Palaniappan, N., Rao, K. C.: 
Regular generalized closed sets. Kyungpook Math. J. 33 (1993), 211-219. 
MR 1253673 | 
Zbl 0794.54002 
[26] Popa, V., Noiri, T.: 
On $M$-continuous functions. Anal. Univ. ``Dunarea de Jos'', Galati, Ser. Mat. Fiz. Mecan. Teor. Fasc. II. 18 (2000), 31-41. 
MR 2314773 
[27] Popa, V., Noiri, T.: 
On the definitions of some generalized forms of continuity under minimal conditions. Mem. Fac. Sci., Kochi Univ., Ser. A 22 (2001), 31-41. 
MR 1822060 | 
Zbl 0972.54011 
[28] Porter, J. R., Woods, R. G.: 
Extensions and Absolutes of Hausdorff spaces. Springer, New York (1988). 
MR 0918341 | 
Zbl 0652.54016 
[29] Ravi, O., Ganesan, S., Chandrasekar, S.: 
Almost $\alpha gs$-closed functions and separation axioms. Bulletin of Mathematical Analysis and Applications 3 (2011), 165-177. 
MR 2792611 
[30] Rosas, E., Rajesh, N., Carpintero, C.: 
Some new types of open and closed sets in minimal structures. II. Int. Math. Forum 4 (2009), 2185-2198. 
MR 2563392 | 
Zbl 1191.54003 
[31] Singal, M. K., Arya, S. P.: 
On almost-regular spaces. Glas. Mat., III. Ser. 4 (1969), 89-99. 
MR 0243483 | 
Zbl 0169.24902 
[32] Singal, M. K., Arya, S. P.: 
Almost normal and almost completely regular spaces. Glas. Mat., III. Ser. 5 (1970), 141-152. 
MR 0275354 | 
Zbl 0197.18901 
[33] Singal, M. K., Singal, A. R.: 
Almost-continuous mappings. Yokohama Math. J. 16 (1968), 63-73. 
MR 0261569 | 
Zbl 0191.20802 
[34] Singal, M. K., Singal, A. R.: 
Mildly normal spaces. Kyungpook Math. J. 13 (1973), 27-31. 
MR 0362215 | 
Zbl 0266.54006 
[35] Kumar, M. K. R. S. Veera: 
$\hat{g}$-closed sets in topological spaces. Bull. Allahabad Math. Soc. 18 (2003), 99-112. 
MR 2061436 
[36] Kumar, M. K. R. S. Veera: 
Between $g^*$-closed sets and $g$-closed sets. Antarct. J. Math. 3 (2006), 43-65. 
MR 2296082 
[37] Kumar, M. K. R. S. Veera: 
$^{\sharp} g$-semi-closed sets in topological spaces. Antarct. J. Math. 2 (2005), 201-222. 
MR 2203685 
[39] Yoshimura, M., Miwa, T., Noiri, T.: 
A generalization of regular closed and $g$-closed functions. Stud. Cercet. Mat. 47 (1995), 353-358. 
MR 1682872 | 
Zbl 0854.54020