[2] Afuwape, A. U.: 
Frequency-domain criteria for dissipativity of some third order differential equations. An. Stiint. Univ. Al. I. Cuza Iasi, n. Ser., Sect. Ia 24 (1978), 271-275. 
MR 0533755 | 
Zbl 0405.34053 
[4] Afuwape, A. U., Omeike, M. O.: 
Further ultimate boundedness of solutions of some system of third order nonlinear ordinary differential equations. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 43 (2004), 7-20. 
MR 2124598 
[5] Afuwape, A. U., Omeike, M. O.: 
Convergence of solutions of certain third order systems of nonlinear ordinary differential equations. J. Nigerian Math. Soc. 25 (2006), 1-12. 
MR 2376821 
[6] Afuwape, A. U., Omeike, M. O.: 
Convergence of solutions of certain non-homogeneous third order ordinary differential equations. Kragujevac J. Math. 31 (2008), 5-16. 
MR 2478598 | 
Zbl 1199.34246 
[7] Bereketoglu, H., Gyori, I.: 
On the boundedness of the solutions of a third-order nonlinear differential equation. Dynam. Systems Appl. 6 (1997), 263-270. 
MR 1461442 
[10] Ezeilo, J. O. C.: 
Some results for the solutions of a certain system of differential equations. J. Math. Anal. Appl. 6 (1963), 389-393. 
MR 0153926 | 
Zbl 0116.29405 
[11] Ezeilo, J. O. C.: 
A generalization of a boundedness theorem for a certain third order differential equation. Proc. Cambridge Philos. Soc. 63 (1967), 735-742. 
MR 0213657 
[12] Ezeilo, J. O. C.: 
New properties of the equation $x'''+ax'' + bx' + h(x) = p(t,x,x',x'')$ for certain special values of the incrementary ratio $y^{-1}\{h(x+y)-h(x)\}$. Equations differentielles et functionalles non-lineares, Hermann Publishing, Paris P. Janssons, J. Mawhin, N. Rouche (1973), 447-462. 
MR 0430413 
[14] Ezeilo, J. O. C.: 
A further result on the existence of periodic solutions of the equation $\stackrel{...}x+\Psi(\dot{x})\ddot{x}+\phi(x)\dot{x}+v(x,\dot{x},\ddot{x})=p(t)$ with a bound $\nu$. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 55 (1978), 51-57. 
MR 0571030 
[15] Haddad, W. A., Chellaboina, V. S.: 
Nonlinear Dynamical Systems and Control---A Lyapunov-Based Approach. Princeton University Press, Princeton (2008). 
MR 2381711 | 
Zbl 1142.34001 
[18] Reisssig, R.: 
Über die Existenz periodischer Lösungen bei einer nichtlinearen Differentialgleichung dritter Ordnung. Math. Nachr. 32 (1966), 83-88. 
DOI 10.1002/mana.19660320109 | 
MR 0216096 
[19] Reisssig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order. Noordhoff, Groningen (1974).
[20] Swick, K. E.: 
Boundedness and stability for a nonlinear third order differential equation. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 56 (1974), 859-865. 
MR 0399597 | 
Zbl 0326.34062 
[21] Tejumola, H. O.: 
On the boundedness and periodicity of solutions of certain third-order non-linear differential equations. Ann. Mat. Pura Appl., IV Ser. 83 (1969), 195-212. 
DOI 10.1007/BF02411167 | 
MR 0262597 
[22] Tunç, Cemil: 
Boundedness of solutions of a third order nonlinear differential equation. J. Inequal. Pure Appl. Math. 6 (2005), Article 3, 6 pp. (electronic). 
MR 2122950 | 
Zbl 1082.34514 
[23] Yoshizawa, T.: 
Stability Theory by Lyapunov's Second Method. Mathematical Society of Japan, Tokyo (1966). 
MR 0208086