| Title:
             | 
Backward doubly stochastic differential equations with infinite time horizon (English) | 
| Author:
             | 
Zhu, Bo | 
| Author:
             | 
Han, Baoyan | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
57 | 
| Issue:
             | 
6 | 
| Year:
             | 
2012 | 
| Pages:
             | 
641-653 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We give a sufficient condition on the coefficients of a class of infinite horizon backward doubly stochastic differential equations (BDSDES), under which the infinite horizon  BDSDES have a unique solution for any given square integrable terminal values. We also show continuous dependence theorem and convergence theorem for this kind of equations. (English) | 
| Keyword:
             | 
infinite horizon | 
| Keyword:
             | 
filtration | 
| Keyword:
             | 
backward stochastic integral | 
| Keyword:
             | 
backward doubly stochastic differential equations | 
| MSC:
             | 
35R60 | 
| MSC:
             | 
60H10 | 
| idZBL:
             | 
Zbl 1274.60193 | 
| idMR:
             | 
MR3010242 | 
| DOI:
             | 
10.1007/s10492-012-0039-2 | 
| . | 
| Date available:
             | 
2012-11-10T20:47:31Z | 
| Last updated:
             | 
2020-07-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/143008 | 
| . | 
| Reference:
             | 
[1] Bally, V., Matoussi, A.: Weak solutions for SPDEs and backward doubly stochastic differential equations.J. Theor. Probab. 14 (2001), 125-164. MR 1822898, 10.1023/A:1007825232513 | 
| Reference:
             | 
[2] Buckdahn, R., Ma, J.: Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I.Stoch. Proc. Appl. 93 (2001), 181-204. Zbl 1053.60065, MR 1828772, 10.1016/S0304-4149(00)00093-4 | 
| Reference:
             | 
[3] Buckdahn, R., Ma, J.: Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II.Stoch. Proc. Appl. 93 (2001), 205-228. Zbl 1053.60066, MR 1831830, 10.1016/S0304-4149(00)00092-2 | 
| Reference:
             | 
[4] Chen, Z., Wang, B.: Infinite time interval BSDE and the convergence of $g$-martingales.J. Aust. Math. Soc., Ser. A 69 (2000), 187-211. MR 1775178, 10.1017/S1446788700002172 | 
| Reference:
             | 
[5] Darling, R., Pardoux, E.: Backward stochastic differential equations with random terminal time and applications to semilinear elliptic PDE.Ann. Probab. 25 (1997), 1135-1159. MR 1457614, 10.1214/aop/1024404508 | 
| Reference:
             | 
[6] Karoui, N. El, Peng, S., Quenez, M. C.: Backward stochastic differential equations in finance.Math. Finance 7 (1977), 1-71. MR 1434407, 10.1111/1467-9965.00022 | 
| Reference:
             | 
[7] Ma, J., Protter, P., Yong, J.: Solving forward-backward stochastic differential equations explicitly---a four step scheme.Theory Related Fields 98 (1994), 339-359. Zbl 0794.60056, MR 1262970, 10.1007/BF01192258 | 
| Reference:
             | 
[8] Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands.Probab. Theory Relat. Fields 78 (1988), 535-581. Zbl 0629.60061, MR 0950346, 10.1007/BF00353876 | 
| Reference:
             | 
[9] Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation.Syst. Control Lett. 14 (1990), 55-61. Zbl 0692.93064, MR 1037747, 10.1016/0167-6911(90)90082-6 | 
| Reference:
             | 
[10] Pardoux, E., Peng, S.: Backward doubly stochastic differential equations and systems of quasilinear SPDEs.Probab. Theory Relat. Fields 98 (1994), 209-227. Zbl 0792.60050, MR 1258986, 10.1007/BF01192514 | 
| Reference:
             | 
[11] Pardoux, E.: Stochastic partial differential equations.Fudan Lecture Notes (2007). | 
| Reference:
             | 
[12] Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations.Stochastics Stochastics Rep. 37 (1991), 61-74. Zbl 0739.60060, MR 1149116, 10.1080/17442509108833727 | 
| Reference:
             | 
[13] Peng, S.: Backward Stochastic Differential Equations and Related $g$-expectation.Longman Harlow (1997), 141-159. MR 1752680 | 
| Reference:
             | 
[14] Peng, S., Shi, Y.: Infinite horizon forward-backward stochastic differential equations.Stoch. Proc. Appl. 85 (2000), 75-92. Zbl 0997.60062, MR 1730617, 10.1016/S0304-4149(99)00066-6 | 
| Reference:
             | 
[15] Peng, S., Shi, Y.: A type of time-symmetric forward-backward stochastic differential equations.C. R. Math., Acad. Sci. Paris 336 (2003), 773-778. Zbl 1031.60055, MR 1989279, 10.1016/S1631-073X(03)00183-3 | 
| Reference:
             | 
[16] Zhang, Q., Zhao, H.: Stationary solutions of SPDEs and infinite horizon BDSDEs.J. Funct. Anal. 252 (2007), 171-219. Zbl 1127.60059, MR 2357354, 10.1016/j.jfa.2007.06.019 | 
| Reference:
             | 
[17] Zhu, B., Han, B.: Comparison theorems for the multidimensional BDSDEs and applications.J. Appl. Math. 2012 (Article ID 3047)81, doi:10.1155/2012/304781. Zbl 1244.60064, MR 2910917, 10.1155/2012/304781 | 
| . |