Previous |  Up |  Next

Article

Keywords:
local variational problem; global current; Chern-Simons theory
Summary:
We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.
References:
[1] Allemandi, G., Francaviglia, M., Raiteri, M.: Covariant charges in Chern-Simons $AdS_3$ gravity. Classical Quant. Grav., 20, 3, 2003, 483-506 DOI 10.1088/0264-9381/20/3/307 | MR 1957170 | Zbl 1023.83018
[2] Anderson, I.M.: Natural variational principles on Riemannian manifolds. Ann. of Math. (2), 120, 2, 1984, 329-370 DOI 10.2307/2006945 | MR 0763910 | Zbl 0565.58019
[3] Bañados, M., Teitelboim, C., Zanelli, J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett., 69, 13, 1992, 1849-1851 DOI 10.1103/PhysRevLett.69.1849 | MR 1181663 | Zbl 0968.83514
[4] Borowiec, A., Ferraris, M., Francaviglia, M.: A covariant Formalism for Chern-Simons Gravity. J. Phys. A., 36, 2003, 2589-2598 DOI 10.1088/0305-4470/36/10/318 | MR 1967520 | Zbl 1027.83012
[5] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.: Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math., 41, 2003, 319-331 MR 2084774 | Zbl 1060.70034
[6] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys., 46, 5, 2005, 052903, 15 pp. DOI 10.1063/1.1901323 | MR 2143003 | Zbl 1110.58011
[7] Chamseddine, A.H.: Topological gravity and supergravity in various dimensions. Nucl. Phys. B, 346, 1, 1990, 213-234 DOI 10.1016/0550-3213(90)90245-9 | MR 1076761
[8] Chern, S.S., Simons, J.: Some cohomology classes in principal fiber bundles and their application to riemannian geometry. Proc. Nat. Acad. Sci. U.S.A., 68, 4, 1971, 791-794 DOI 10.1073/pnas.68.4.791 | MR 0279732 | Zbl 0209.25401
[9] Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math., 99, 1974, 48-69 DOI 10.2307/1971013 | MR 0353327 | Zbl 0283.53036
[10] Deser, S., Jackiw, R., Templeton, S.: Topologically massive gauge theories. Ann. Physics, 140, 2, 1982, 372-411 DOI 10.1016/0003-4916(82)90164-6 | MR 0665601
[11] Eck, D.J.: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc., 247, 1981, 1-48 MR 0632164 | Zbl 0493.53052
[12] Fatibene, L., Ferraris, M., Francaviglia, M.: Augmented variational principles and relative conservation laws in classical field theory. Int. J. Geom. Methods Mod. Phys., 2, 3, 2005, 373-392 DOI 10.1142/S0219887805000557 | MR 2152166 | Zbl 1133.70335
[13] Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E.: Canonical connections in gauge-natural field theories. Int. J. Geom. Methods Mod. Phys., 5, 6, 2008, 973-988 DOI 10.1142/S0219887808003144 | MR 2453935 | Zbl 1175.58006
[14] Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E.: Gauge-natural Noether currents and connection fields. Int. J. Geom. Methods Mod. Phys., 8, 1, 2011, 177-185 DOI 10.1142/S0219887811005075 | MR 2782884 | Zbl 1215.58005
[15] Ferraris, M., Francaviglia, M., Raiteri, M.: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Classical Quant. Grav., 20, 2003, 4043-4066 DOI 10.1088/0264-9381/20/18/312 | MR 2017333
[16] Ferraris, M., Palese, M., Winterroth, E.: Local variational problems and conservation laws. Diff. Geom. Appl, 29, 2011, S80-S85 MR 2832003 | Zbl 1233.58002
[17] Francaviglia, M., Palese, M., Winterroth, E.: Second variational derivative of gauge-natural invariant Lagrangians and conservation laws. 2005, Differential geometry and its applications, Matfyzpress, Prague, 591-604 MR 2268969 | Zbl 1109.58005
[18] Francaviglia, M., Palese, M., Winterroth, E.: Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Methods Mod. Phys., 10, 1, 2013, 1220024 (10 pages). MR 2998326 | Zbl 1271.58008
[19] Francaviglia, M., Palese, M., Vitolo, R.: Symmetries in finite order variational sequences. Czech. Math. J., 52, 1, 2002, 197-213 DOI 10.1023/A:1021735824163 | MR 1885465 | Zbl 1006.58014
[20] Krupka, D.: Variational Sequences on Finite Order Jet Spaces. Proc. Diff. Geom. Appl., 1990, 236-254, J. Janyška, D. Krupka eds., World Sci., Singapore MR 1062026 | Zbl 0813.58014
[21] Krupka, D., Sedenkova, J.: Variational sequences and Lepage forms. Differential geometry and its applications, Matfyzpress, Prague, 2005, 617-627 MR 2271823 | Zbl 1115.35349
[22] Krupkova, O.: Lepage forms in the calculus of variations. Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 27-55 MR 2523431 | Zbl 1208.58019
[23] Lepage, Th.H.J.: Sur les champ geodesiques du Calcul de Variations, I, II. Bull. Acad. Roy. Belg., Cl. Sci., 22, 1936, 716-729, 1036--1046
[24] Musilová, J., Lenc, M.: Lepage forms in variational theories from Lepage's idea to the variational sequence. Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 3-26 MR 2523430 | Zbl 1208.58001
[25] Noether, E.: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257
[26] Palese, M., Winterroth, E.: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno), 41, 3, 2005, 289-310 MR 2188385 | Zbl 1112.58005
[27] Palese, M., Winterroth, E.: Covariant gauge-natural conservation laws. Rep. Math. Phys., 54, 3, 2004, 349-364 DOI 10.1016/S0034-4877(04)80024-7 | MR 2115744 | Zbl 1066.58009
[28] Palese, M., Winterroth, E.: On the relation between the Jacobi morphism and the Hessian in gauge-natural field theories. Teoret. Mat. Fiz., 152, 2, 2007, 377-389, transl. Theoret. and Math. Phys. 152 (2007) 1191--1200 MR 2429287
[29] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes. AIP Conf. Proc., 1360, 2011, 106-112 Zbl 1276.70012
[30] Palese, M., Winterroth, E., Garrone, E.: Second variational derivative of local variational problems and conservation laws. Arch. Math. (Brno), 47, 5, 2011, 395-403 MR 2876943 | Zbl 1265.58008
[31] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012
[32] Witten, E.: $2+1$-dimensional gravity as an exactly soluble system. Nucl. Phys., B 311, 1, 1988, 46-78, E. Witten: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121 (1989) 351-399 DOI 10.1016/0550-3213(88)90143-5 | MR 0974271
Partner of
EuDML logo