Previous |  Up |  Next

Article

Title: Exponential entropy on intuitionistic fuzzy sets (English)
Author: Verma, Rajkumar
Author: Sharma, Bhu Dev
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 1
Year: 2013
Pages: 114-127
Summary lang: English
.
Category: math
.
Summary: In the present paper, based on the concept of fuzzy entropy, an exponential intuitionistic fuzzy entropy measure is proposed in the setting of Atanassov's intuitionistic fuzzy set theory. This measure is a generalized version of exponential fuzzy entropy proposed by Pal and Pal. A connection between exponential fuzzy entropy and exponential intuitionistic fuzzy entropy is also established. Some interesting properties of this measure are analyzed. Finally, a numerical example is given to show that the proposed entropy measure for Atanassov's intuitionistic fuzzy set is consistent by comparing it with other existing entropies. (English)
Keyword: fuzzy set
Keyword: fuzzy entropy
Keyword: Atanassov's intuitionistic fuzzy set
Keyword: intuitionistic fuzzy entropy
Keyword: exponential entropy
MSC: 94A17
.
Date available: 2013-03-05T15:10:51Z
Last updated: 2013-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/143243
.
Reference: [1] Atanassov, K.: Intuitionistic fuzzy sets..Fuzzy Sets and Systems 20 (1986), 1, 87-96. Zbl 1247.03112, MR 0852871
Reference: [2] Atanassov, K.: New operations defined over intuitionistic fuzzy sets..Fuzzy Sets and Systems 61 (1994), 2, 137-142. MR 1262464, 10.1016/0165-0114(94)90229-1
Reference: [3] Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets..Fuzzy Sets and Systems 78 (1996), 3, 305-316. Zbl 0872.94061, MR 1378726, 10.1016/0165-0114(96)84611-2
Reference: [4] Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets..Fuzzy Sets and Systems 79 (1996), 3, 403-405. Zbl 0871.04006, MR 1388413, 10.1016/0165-0114(95)00154-9
Reference: [5] Luca, A. De, Termini, S.: A definition of non-probabilistic entropy in the setting of fuzzy set theory..Inform. Control 20 (1972), 4, 301-312. MR 0327383, 10.1016/S0019-9958(72)90199-4
Reference: [6] De, S. K., Biswas, R., Roy, A. R.: Some operations on intuitionistic fuzzy sets..Fuzzy Sets and Systems 114 (2000), 3, 477-484. Zbl 0961.03049, MR 1775284
Reference: [7] Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets..Academic-Press, New York 1975. Zbl 0332.02063, MR 0485402
Reference: [8] Li, F., Lu, Z. H., Cai, L. J.: The entropy of vague sets based on fuzzy sets..J. Huazhong Univ. Sci. Tech. 31 (2003), 1, 24-25. MR 1993200
Reference: [9] Pal, N. R., Pal, S. K.: Object background segmentation using new definitions of entropy..IEEE Proc. 366 (1989), 284-295.
Reference: [10] Prakash, O., Sharma, P. K., Mahajan, R.: New measures of weighted fuzzy entropy and their applications for the study of maximum weighted fuzzy entropy principle..Inform. Sci. 178 (2008), 11, 2839-2395. MR 2416989
Reference: [11] Shannon, C. E.: A mathematical theory of communication..Bell Syst. Tech. J. 27 (1948), 379-423, 623-656. Zbl 1154.94303, MR 0026286
Reference: [12] Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets..Fuzzy Sets and Systems 118 (2001), 3, 467-477. Zbl 1045.94007, MR 1809394, 10.1016/S0165-0114(98)00402-3
Reference: [13] Vlachos, I. K., Sergiagis, G. D.: Intuitionistic fuzzy information - Application to pattern recognition..Pattern Recognition Lett. 28 (2007), 2, 197-206. 10.1016/j.patrec.2006.07.004
Reference: [14] Wei, C. P., Gao, Z. H., Guo, T. T.: An intuitionistic fuzzy entropy measure based on the trigonometric function..Control and Decision 27 (2012), 4, 571-574. MR 2976003
Reference: [15] Ye, J.: Two effective measures of intuitionistic fuzzy entropy..Computing 87 (2010), 1-2, 55-62. Zbl 1192.94076, MR 2601774
Reference: [16] Zadeh, L. A.: Fuzzy sets..Inform. Control 8 (1965), 3, 338-353. Zbl 0942.00007, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [17] Zadeh, L. A.: Probability measure of fuzzy events..J. Math. Anal. Appl. 23 (1968), 2, 421-427. MR 0230569, 10.1016/0022-247X(68)90078-4
Reference: [18] Zhang, Q. S., Jiang, S. Y.: A note on information entropy measure for vague sets..Inform. Sci. 178 (2008), 21, 4184-4191. MR 2454647, 10.1016/j.ins.2008.07.003
.

Files

Files Size Format View
Kybernetika_49-2013-1_8.pdf 297.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo