| Title:
             | 
Characterizing pure, cryptic and Clifford inverse semigroups (English) | 
| Author:
             | 
Petrich, Mario | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
64 | 
| Issue:
             | 
4 | 
| Year:
             | 
2014 | 
| Pages:
             | 
1099-1112 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
An inverse semigroup $S$ is pure if $e=e^2$, $a\in S$, $e<a$ implies $a^2=a$; it is cryptic if Green's relation $\mathcal {H}$ on $S$ is a congruence; it is a Clifford semigroup if it is a semillatice of groups. We characterize the pure ones by the absence of certain subsemigroups and a homomorphism from a concrete semigroup, and determine minimal nonpure varieties. Next we characterize the cryptic ones in terms of their group elements and also by a homomorphism of a semigroup constructed in the paper. We also characterize groups and Clifford semigroups in a similar way by means of divisors. The paper also contains characterizations of completely semisimple inverse and of combinatorial inverse semigroups in a similar manner. It ends with a description of minimal non-$\mathcal {V}$ varieties, for varieties $\mathcal {V}$ of inverse semigroups considered. (English) | 
| Keyword:
             | 
inverse semigroup | 
| Keyword:
             | 
pure inverse semigroup | 
| Keyword:
             | 
cryptic inverse semigroup | 
| Keyword:
             | 
Clifford semigroup | 
| Keyword:
             | 
group-closed inverse semigroup | 
| Keyword:
             | 
pure variety | 
| Keyword:
             | 
completely semisimple inverse semigroup | 
| Keyword:
             | 
combinatorial inverse semigroup | 
| Keyword:
             | 
variety | 
| MSC:
             | 
20M07 | 
| MSC:
             | 
20M20 | 
| idZBL:
             | 
Zbl 06433716 | 
| idMR:
             | 
MR3304800 | 
| DOI:
             | 
10.1007/s10587-014-0155-0 | 
| . | 
| Date available:
             | 
2015-02-09T17:43:13Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/144163 | 
| . | 
| Reference:
             | 
[1] Mills, J. E.: Combinatorially factorizable inverse monoids.Semigroup Forum 59 (1999), 220-232. Zbl 0936.20054, MR 1847288, 10.1007/PL00006005 | 
| Reference:
             | 
[2] Pastijn, F., Volkov, M. V.: Minimal noncryptic e-varieties of regular semigroups.J. Algebra 184 (1996), 881-896. Zbl 0862.20046, MR 1407875, 10.1006/jabr.1996.0289 | 
| Reference:
             | 
[3] Petrich, M.: Inverse Semigroups.Pure and Applied Mathematics. A Wiley-Interscience Publication Wiley, New York (1984). Zbl 0546.20053, MR 0752899 | 
| Reference:
             | 
[4] Reilly, N. R.: Minimal non-cryptic varieties of inverse semigroups.Q. J. Math., Oxf. II. Ser. 36 (1985), 467-487. Zbl 0582.20038, MR 0816487, 10.1093/qmath/36.4.467 | 
| Reference:
             | 
[5] Sen, M. K., Yang, H. X., Guo, Y. Q.: A note on $\mathcal{H}$ relation on an inverse semigroup.J. Pure Math. 14 (1997), 1-3. MR 1658187 | 
| . |