[1] Aihara, K., Suzuki, H.: 
Theory of hybrid dynamical systems and its applications to biological and medical systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368 (2010), 4893-4914. 
DOI 10.1098/rsta.2010.0237 | 
Zbl 1211.37099 
[2] Azhmyakov, V.: 
On the geometric aspects of the invariant ellipsoid method: Application to the robust control design. In: Proc. 50th IEEE Conference on Decision and Control and demonstratedntrol Conference, Orlando 2011, pp. 1353-1358. 
DOI 10.1109/cdc.2011.6161180 
[4] Yazdi, M. Barkhordari, Jahed-Motlagh, M. R.: 
Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization. Chemical Engrg. J. 155 (2009), 838-843. 
DOI 10.1016/j.cej.2009.09.008 
[7] Donkers, M. C. F., Hemmels, W. P. M. H., Wouw, N. Van den, Hetel, L.: 
Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Automat. Control 56 (2011), 9, 2101-2115. 
DOI 10.1109/tac.2011.2107631 | 
MR 2865767 
[8] Filipov, A. F.: Differential Equations with Discontinuous Right-hand Side. Kluwer, Dordrecht 1988.
[10] Fridman, E., Niculescu, S. I.: 
On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. Int. J. Robust Nonlinear Control 18 (2008), 3, 364-374. 
DOI 10.1002/rnc.1230 | 
MR 2378407 | 
Zbl 1284.93206 
[15] Glover, J. D., Schweppe, F. C.: 
Control of linear dynamic systems with set constrained disturbance. IEEE Trans. Automat. Control 16 (1971), 5, 411-423. 
DOI 10.1109/tac.1971.1099781 | 
MR 0287947 
[16] Gonzalez-Garcia, S., Polyakov, A., Poznyak, A.: 
Linear feedback spacecraft stabilization using the method of invariant ellipsoids. In: Proc. 41st Southeastern Symposium on System Theory 2009, pp. 195-198. 
DOI 10.1109/ssst.2009.4806834 
[17] Gonzalez-Garcia, S., Polyakov., A., Poznyak, A.: 
Output linear controller for a class of nonlinear systems using the invariant ellipsoid technique. In: American Control Conference, St. Louis 2009, pp. 1160-1165. 
DOI 10.1109/acc.2009.5160434 
[19] Hespanha, J. P., Morse, A. S.: 
Stability of switched systems with average dwell-time. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 2655-2660. 
DOI 10.1109/cdc.1999.831330 
[20] Kruszewski, A., Jiang, W. J., Fridman, E., Richard, J. P., Toguyeni, A.: 
A switched system approach to exponential stabilization through communication network. IEEE Trans. Control Systems Technol. 20 (2012), 887-900. 
DOI 10.1109/tcst.2011.2159793 
[22] Li, J., Liu, Y., Mei, R., Li, B.: 
Robust H$_\infty$ output feedback control of discrete time switched systems via a new linear matrix inequality formulation. In: Proc. 8th World Congress on Intelligent Control and Automation 2010, pp. 3377-3382. 
DOI 10.1109/wcica.2010.5553817 
[24] Liberzon, D.: 
Stabilizing a switched linear system by sampled-data quantized feedback. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 8321-8328. 
DOI 10.1109/cdc.2011.6160212 
[26] Lin, H., Antsaklis, P. J.: 
Stability and stabilizability of switched linear systems: A survey of recent results. IEEE Trans. Automat. Control 54 (2009), 308-322. 
DOI 10.1109/tac.2008.2012009 | 
MR 2491959 
[27] Liu, Y., Niu, Y., Ho, D.: Sliding mode control for linear uncertain switched systems. In: Proc. 31st Chinese Control Conference, Hefei 2012, pp. 3177-3181.
[28] Liu, T., Jiang, Z. P., Hill, D. J.: 
Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Trans. Automat. Control 57 (2012),5, 1326-1332. 
DOI 10.1109/tac.2012.2191870 | 
MR 2923898 
[30] Lozada-Castillo, N. B., Alazki, H., Poznyak, A. S.: 
Robust control design through the attractive ellipsoid technique for a class of linear stochastic models with multiplicative and additive noises. IMA J. Math. Control Inform. 30 (2013), 1-19. 
DOI 10.1093/imamci/dns008 | 
MR 3037694 | 
Zbl 1273.93167 
[31] Nair, G. N., Fagnani, F., Zampieri, S., Evans, R. J.: 
Feedback control under data rate constraints: an overview. Proc. of the IEEE 95 (2007), 108-137. 
DOI 10.1109/jproc.2006.887294 
[32] Nie, H., Song, Z., Li, P., Zhao, J.: 
Robust H$_\infty$ dynamic output feedback control for uncertain discrete-time switched systems with time-varying delays. In: Proc. 2008 Chinese Control and Decision Conference, Yantai-Shandong 2008, pp. 4381-4386. 
DOI 10.1109/ccdc.2008.4598158 
[33] Ordaz, P., Alazki, H., Poznyak, A.: 
A sample-time adjusted feedback for robust bounded output stabilization. Kybernetika 49 (2013), 6, 911-934. 
MR 3182648 | 
Zbl 1284.93242 
[38] Poznyak, A. S., Azhmyakov, V., Mera, M.: 
Practical output feedback stabilization for a class of continuous-time dynamic system under sample-data outputs. Int. J. Control 84 (2011), 1408-1416. 
DOI 10.1080/00207179.2011.603097 | 
MR 2830870 
[39] Shorten, R., Wirth, F., Manson, O., Wulff, K., King, C.: 
Stability criteria for switched and hybrid systems. SIAM Rev. 49 (2007), 545-592. 
DOI 10.1137/05063516x | 
MR 2375524 
[42] Wang, Y., Gupta, V., Antsaklis, P.: 
On passivity of a class of discrete-time switched nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 692-702. 
DOI 10.1109/tac.2013.2287074 | 
MR 3188475 
[43] Yanyan, L., Jun, Z., Dimirovski, G.: Passivity, feedback equivalence and stability of switched nonlinear systems using multiple storage functions. In: Proc. 30th Chinese Control Conference, Yantai 2011, pp. 1805-1809.
[44] Zhang, W. A., Yu, L.: 
Output feedback stabilization of networked control systems with packet dropouts. IEEE Trans. Automat. Control 52 (2007), 1705-1710. 
DOI 10.1109/tac.2007.904284 | 
MR 2352449