[1] Abdeljawad, T., Baleanu, D.: 
Fractional differences and integration by parts. J. Computat. Analysis Appl. 13 (2011), 574-582. 
MR 2752428 | 
Zbl 1225.39008 
[2] Atıcı, F. M., Eloe, P. W.: 
A transform method in discrete fractional calculus. Int. J. Differ, Equ. 2 (2007), 165-176. 
MR 2493595 
[5] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: 
Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2011), 417-437. 
DOI 10.3934/dcds.2011.29.417 | 
MR 2728463 | 
Zbl 1209.49020 
[6] Busłowicz, M.: Stability of continuous-time linear systems described by state equation with fractional commensurate orders of derivatives. Przegląd Elektroniczby (Electrical Review) 88 (2012), 17-20.
[8] Chen, F.: 
Fixed points and asymptotic stability of nonlinear fractional difference equations. Electr. J. Qual. Theory Differ. Equ. 39 (2011), 1-18. 
DOI 10.1155/2011/713201 | 
MR 2805759 
[11] Girejko, E., Mozyrska, D.: Semi-linear fractional systems with Caputo type multi-step differences. In: Symposium on Fractional Signals and Systems, Instituto Superior de Engenharia de Coimbra, Coimbra, November 2011, pp. 79-88.
[12] Guermah, S., Djennoune, S., Bettayeb, M.: Asymptotic stability and practical stability of linear discrete-time fractional order systems. In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara 2008.
[13] Holm, M. T.: 
The Theory of Discrete Fractional Calculus: Development and Application. PhD. Thesis, University of Nebraska - Lincoln, 2011. 
MR 2873503 
[14] Hu, J. B., Lu, G. P., Zhang, S. B., Zhao, L. D.: 
Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20 (2014), 905-913. 
DOI 10.1016/j.cnsns.2014.05.013 | 
MR 3255642 
[17] Kaczorek, T.: 
Practical stability of positive fractional discrete-time linear systems. Bull. Pol. Acad. Sci. Techn. Sci. 56 (2008), 313-317. 
Zbl 1167.93019 
[21] Li, C. P., Zhang, F. R.: 
A survey on the stability of fractional differential equations. Eur. Phys. J. 193 (2011), 27-47. 
DOI 10.1140/epjst/e2011-01379-1 
[24] Margarita, R., Rogosin, S. V., Machado, J. A. Tenreiro, Trujillo, J. J.: 
Stability of fractional order systems. Math. Probl. Engrg. 2013 (2013), 14 pages. 
DOI 10.1155/2013/356215 | 
MR 3062648 
[25] Miller, K. S., Ross, B.: 
Fractional difference calculus. In: Proc. International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Koriyama 1988, pp. 139-152. 
MR 1199147 | 
Zbl 0693.39002 
[26] Mozyrska, D., Girejko, E.: 
Overview of the fractional $h$-difference operators. In: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume (A. Almeida, L. Castro, F.-O. Speck, eds.), Springer 2013, pp. 253-267. 
DOI 10.1007/978-3-0348-0516-2_14 | 
MR 3060418 
[27] Mozyrska, D., Girejko, E., Wyrwas, M.: 
Comparision of $h$-difference fractional operators. In: Advances in the Theory and Applications of non-integer Order Systems (W. Mitkowski, J. Kacprzyk, J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 191-197. 
DOI 10.1007/978-3-319-00933-9_17 | 
MR 3289943 
[28] Mozyrska, D., Pawluszewicz, E.: 
Local controllability of nonlinear discrete-time fractional order systems. Bull. Pol. Acad. Sci. Techn. Sci. 61 (2013), 251-256. 
DOI 10.2478/bpasts-2013-0024 
[29] Ostalczyk, P.: 
Equivalent descriptions of a discrete time fractional order linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22 (2012), 533-538. 
MR 3025260 | 
Zbl 1302.93140 
[30] Petráš, I.: 
Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12 (2009), 269-298. 
MR 2572711 | 
Zbl 1182.26017 
[32] Podlubny, I.: 
Fractional Differential Equations. Mathematics in Sciences and Engineering. Academic Press, San Diego 1999. 
MR 1658022 
[35] Wyrwas, M., Girejko, E., Mozyrska, D., Pawluszewicz, E.: 
Stability of fractional difference systems with two orders. In: Advances in the Theory and Applications of Non-integer Order Systems (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 41-52. 
DOI 10.1007/978-3-319-00933-9_4 | 
MR 3289930 | 
Zbl 1271.93129