| Title:
             | 
Generalized 3-edge-connectivity of Cartesian product graphs (English) | 
| Author:
             | 
Sun, Yuefang | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
65 | 
| Issue:
             | 
1 | 
| Year:
             | 
2015 | 
| Pages:
             | 
107-117 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The generalized $k$-connectivity $\kappa _{k}(G)$ of a graph $G$ was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized $k$-edge-connectivity which is defined as $\lambda _k(G) = \min \{\lambda (S)\colon  S \subseteq V(G)$ and $|S|= k\}$, where $\lambda (S)$ denotes the maximum number $\ell $ of pairwise edge-disjoint trees $T_1, T_2, \ldots , T_{\ell }$ in $G$ such that $S\subseteq V(T_i)$ for $1\leq i\leq \ell $. In this paper we prove that for any two connected graphs $G$ and $H$ we have $\lambda _3(G\square H)\geq \lambda _3(G)+\lambda _3(H)$, where $G\square H$ is the Cartesian product of $G$ and $H$. Moreover, the bound is sharp. We also obtain the precise values for the generalized 3-edge-connectivity of the Cartesian product of some special graph classes. (English) | 
| Keyword:
             | 
generalized connectivity | 
| Keyword:
             | 
generalized edge-connectivity | 
| Keyword:
             | 
Cartesian product | 
| MSC:
             | 
05C40 | 
| MSC:
             | 
05C76 | 
| idZBL:
             | 
Zbl 06433723 | 
| idMR:
             | 
MR3336027 | 
| DOI:
             | 
10.1007/s10587-015-0162-9 | 
| . | 
| Date available:
             | 
2015-04-01T12:24:03Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/144215 | 
| . | 
| Reference:
             | 
[1] Bondy, J. A., Murty, U. S. R.: Graph Theory.Graduate Texts in Mathematics 244 Springer, Berlin (2008). Zbl 1134.05001, MR 2368647, 10.1007/978-1-84628-970-5_1 | 
| Reference:
             | 
[2] Chartrand, G., Kappor, S. F., Lesniak, L., Lick, D. R.: Generalized connectivity in graphs.Bull. Bombay Math. Colloq. 2 (1984), 1-6. | 
| Reference:
             | 
[3] Chiue, W.-S., Shieh, B.-S.: On connectivity of the Cartesian product of two graphs.Appl. Math. Comput. 102 (1999), 129-137. Zbl 0927.05048, MR 1688841, 10.1016/S0096-3003(98)10041-3 | 
| Reference:
             | 
[4] Imrich, W., Klavžar, S.: Product Graphs. Structure and Recognition.Wiley-Interscience Series in Discrete Mathematics and Optimization Wiley, New York (2000). Zbl 0963.05002, MR 1788124 | 
| Reference:
             | 
[5] Imrich, W., Klavžar, S., Rall, D. F.: Topics in Graph Theory. Graphs and Their Cartesian Product.A K Peters Wellesley (2008). Zbl 1156.05001, MR 2468851 | 
| Reference:
             | 
[6] Klavžar, S., Špacapan, S.: On the edge-connectivity of Cartesian product graphs.Asian-Eur. J. Math. 1 (2008), 93-98. Zbl 1144.05312, MR 2400304, 10.1142/S1793557108000102 | 
| Reference:
             | 
[7] Li, H., Li, X., Sun, Y.: The generalized 3-connectivity of Cartesian product graphs.Discrete Math. Theor. Comput. Sci. (electronic only) 14 (2012), 43-54. MR 2900353 | 
| Reference:
             | 
[8] Li, X., Mao, Y.: A survey on the generalized connectivity of graphs.ArXiv:1207.1838v2 [math.CO]. | 
| Reference:
             | 
[9] Li, X., Mao, Y., Sun, Y.: On the generalized (edge-)connectivity of graphs.Australas. J. Comb. (electronic only) 58 (2014), 304-319. Zbl 1296.05107, MR 3211785 | 
| Reference:
             | 
[10] Li, X., Mao, Y., Wang, L.: Graphs with large generalized 3-edge-connectivity.ArXiv:1201. 3699v1 [math.CO]. | 
| Reference:
             | 
[11] Liouville, B.: Sur la connectivité des produits de graphes.C. R. Acad. Sci., Paris, Sér. A 286 (1978), 363-365 French. Zbl 0368.05037, MR 0480202 | 
| Reference:
             | 
[12] Sabidussi, G.: Graphs with given group and given graph-theoretical properties.Can. J. Math. 9 (1957), 515-525. Zbl 0079.39202, MR 0094810, 10.4153/CJM-1957-060-7 | 
| Reference:
             | 
[13] Sherwani, N. A.: Algorithms for VLSI Physical Design Automation.Kluwer Academic Publishers Boston (1999). Zbl 0926.68059 | 
| Reference:
             | 
[14] Špacapan, S.: Connectivity of Cartesian products of graphs.Appl. Math. Lett. 21 (2008), 682-685. Zbl 1152.05340, MR 2423045, 10.1016/j.aml.2007.06.010 | 
| Reference:
             | 
[15] Xu, J.-M., Yang, C.: Connectivity of Cartesian product graphs.Discrete Math. 306 (2006), 159-165. Zbl 1085.05042, MR 2202083, 10.1016/j.disc.2005.11.010 | 
| . |