| Title:
             | 
$n$-angulated quotient categories induced by mutation pairs (English) | 
| Author:
             | 
Lin, Zengqiang | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
65 | 
| Issue:
             | 
4 | 
| Year:
             | 
2015 | 
| Pages:
             | 
953-968 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Geiss, Keller and Oppermann (2013) introduced the notion of \mbox {$n$-angulated} category, which is a ``higher dimensional'' analogue of triangulated category, and showed that certain $(n-2)$-cluster tilting subcategories of triangulated categories give rise to \mbox {$n$-angulated} categories. We define mutation pairs in \mbox {$n$-angulated} categories and prove that given such a mutation pair, the corresponding quotient category carries a natural \mbox {$n$-angulated} structure. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories. (English) | 
| Keyword:
             | 
\mbox {$n$-angulated} category | 
| Keyword:
             | 
quotient category | 
| Keyword:
             | 
mutation pair | 
| MSC:
             | 
18E30 | 
| idZBL:
             | 
Zbl 06537703 | 
| idMR:
             | 
MR3441328 | 
| DOI:
             | 
10.1007/s10587-015-0220-3 | 
| . | 
| Date available:
             | 
2016-01-13T09:07:49Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/144785 | 
| . | 
| Reference:
             | 
[1] Bergh, P. A., Thaule, M.: The Grothendieck group of an $n$-angulated category.J. Pure Appl. Algebra 218 (2014), 354-366. Zbl 1291.18015, MR 3120636, 10.1016/j.jpaa.2013.06.007 | 
| Reference:
             | 
[2] Bergh, P. A., Jasso, G., Thaule, M.: Higher \mbox{$n$-angulations} from local rings.(to appear) in J. Lond. Math. Soc. arXiv:1311.2089v2[math.CT] (2013). MR 3073923 | 
| Reference:
             | 
[3] Bergh, P. A., Thaule, M.: The axioms for {$n$}-angulated categories.Algebr. Geom. Topol. 13 (2013), 2405-2428. Zbl 1272.18008, MR 3073923, 10.2140/agt.2013.13.2405 | 
| Reference:
             | 
[4] Geiss, C., Keller, B., Oppermann, S.: {$n$}-angulated categories.J. Reine Angew. Math. 675 (2013), 101-120. Zbl 1271.18013, MR 3021448 | 
| Reference:
             | 
[5] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras.London Mathematical Society Lecture Note Series 119 Cambridge University Press, Cambridge (1988). Zbl 0635.16017, MR 0935124 | 
| Reference:
             | 
[6] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules.Invent. Math. 172 (2008), 117-168. Zbl 1140.18007, MR 2385669, 10.1007/s00222-007-0096-4 | 
| Reference:
             | 
[7] Jasso, G.: \mbox{$n$-abelian} and \mbox{$n$-exact} categories.arXiv:1405.7805v2[math.CT] (2014). MR 3519980 | 
| Reference:
             | 
[8] J{ørgensen, P.: Torsion classes and $t$-structures in higher homological algebra.Int. Math. Res. Not. (2015), doi:10.1093/imrn/rnv265. MR 3544623, 10.1093/imrn/rnv265 | 
| Reference:
             | 
[9] Puppe, D.: On the formal structure of stable homotopy theory.Colloquium on Algebraic Topology Lectures Matematisk Institut, Aarhus Universitet, Aarhus (1962), 65-71. Zbl 0139.41106 | 
| Reference:
             | 
[10] Verdier, J.-L.: Catégories dérivées. Quelques résultats (État O).Semin. Geom. Algebr. Bois-Marie, SGA 4 1/2, Lect. Notes Math. 569 Springer, New York French (1977). Zbl 0407.18008 | 
| . |