| Title:
             | 
On the structure of sequentially Cohen-Macaulay bigraded modules (English) | 
| Author:
             | 
Majd, Leila Parsaei | 
| Author:
             | 
Rahimi, Ahad | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
65 | 
| Issue:
             | 
4 | 
| Year:
             | 
2015 | 
| Pages:
             | 
1011-1022 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $K$ be a field and $S=K[x_1,\ldots ,x_m, y_1,\ldots ,y_n]$ be the standard bigraded polynomial ring over $K$. In this paper, we explicitly describe the structure of finitely generated bigraded ``sequentially Cohen-Macaulay'' $S$-modules with respect to $Q=(y_1,\ldots ,y_n)$. Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to $Q$ in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to $Q$ are considered. (English) | 
| Keyword:
             | 
dimension filtration | 
| Keyword:
             | 
sequentially Cohen-Macaulay filtration | 
| Keyword:
             | 
cohomological dimension | 
| Keyword:
             | 
bigraded module | 
| Keyword:
             | 
Cohen-Macaulay module | 
| MSC:
             | 
13C14 | 
| MSC:
             | 
13D45 | 
| MSC:
             | 
16W50 | 
| MSC:
             | 
16W70 | 
| idZBL:
             | 
Zbl 06537707 | 
| idMR:
             | 
MR3441332 | 
| DOI:
             | 
10.1007/s10587-015-0224-z | 
| . | 
| Date available:
             | 
2016-01-13T09:15:02Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/144789 | 
| . | 
| Reference:
             | 
[1] Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Computations in Commutative Algebra.(1995), http://cocoa.dima.unige.it./research/publications.html, 1995. | 
| Reference:
             | 
[2] Chardin, M., Jouanolou, J.-P., Rahimi, A.: The eventual stability of depth, associated primes and cohomology of a graded module.J. Commut. Algebra 5 (2013), 63-92. Zbl 1275.13014, MR 3084122, 10.1216/JCA-2013-5-1-63 | 
| Reference:
             | 
[3] Cuong, N. T., Cuong, D. T.: On sequentially Cohen-Macaulay modules.Kodai Math. J. 30 (2007), 409-428. Zbl 1139.13011, MR 2372128, 10.2996/kmj/1193924944 | 
| Reference:
             | 
[4] Cuong, N. T., Cuong, D. T.: On the structure of sequentially generalized Cohen-Macaulay modules.J. Algebra 317 (2007), 714-742. Zbl 1137.13010, MR 2362938, 10.1016/j.jalgebra.2007.06.026 | 
| Reference:
             | 
[5] Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry.Graduate Texts in Mathematics 150 Springer, Berlin (1995). Zbl 0819.13001, MR 1322960 | 
| Reference:
             | 
[6] Rahimi, A.: Sequentially Cohen-Macaulayness of bigraded modules.(to appear) in Rocky Mt. J. Math. | 
| Reference:
             | 
[7] Rahimi, A.: Relative Cohen-Macaulayness of bigraded modules.J. Algebra 323 (2010), 1745-1757. Zbl 1184.13053, MR 2588136, 10.1016/j.jalgebra.2009.11.026 | 
| Reference:
             | 
[8] Schenzel, P.: On the dimension filtration and Cohen-Macaulay filtered modules.Commutative Algebra and Algebraic Geometry. Proc. of the Ferrara Meeting, Italy F. Van Oystaeyen Lecture Notes Pure Appl. Math. 206 Marcel Dekker, New York (1999), 245-264. Zbl 0942.13015, MR 1702109 | 
| . |