| Title:
             | 
Zonoids with an equatorial characterization (English) | 
| Author:
             | 
Aramyan, Rafik | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
61 | 
| Issue:
             | 
4 | 
| Year:
             | 
2016 | 
| Pages:
             | 
413-422 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
It is known that a local equatorial characterization of zonoids does not exist. The question arises: Is there a subclass of zonoids admitting a local equatorial characterization. In this article a sufficient condition is found for a centrally symmetric convex body to be a zonoid. The condition has a local equatorial description. Using the condition one can define a subclass of zonoids admitting a local equatorial characterization. It is also proved that a convex body whose boundary is an ellipsoid belongs to the class. (English) | 
| Keyword:
             | 
integral geometry | 
| Keyword:
             | 
convex body | 
| Keyword:
             | 
zonoid | 
| Keyword:
             | 
support function | 
| MSC:
             | 
52A15 | 
| MSC:
             | 
53C45 | 
| MSC:
             | 
53C65 | 
| idZBL:
             | 
Zbl 06644004 | 
| idMR:
             | 
MR3532251 | 
| DOI:
             | 
10.1007/s10492-016-0139-5 | 
| . | 
| Date available:
             | 
2016-08-01T09:24:15Z | 
| Last updated:
             | 
2020-07-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/145793 | 
| . | 
| Reference:
             | 
[1] Aramyan, R. H.: Reconstruction of centrally symmetric convex bodies in ${\mathbb R}^n$.Bul. Acad. Ştiinţe Repub. Mold., Mat. 65 (2011), 28-32. MR 2849225 | 
| Reference:
             | 
[2] Aramyan, R. H.: Measures in the space of planes and convex bodies.J. Contemp. Math. Anal., Armen. Acad. Sci. 47 78-85 (2012), translation from Izv. Nats. Akad. Nauk Armen., Mat. 47 19-30 Russian (2012). Zbl 1302.53082, MR 3287915 | 
| Reference:
             | 
[3] Goodey, P., Weil, W.: Zonoids and generalisations.Handbook of Convex Geometry, Vol. A, B North-Holland, Amsterdam 1297-1326 (1993), P. M. Gruber et al. 1297-1326. Zbl 0791.52006, MR 1243010, 10.1016/B978-0-444-89597-4.50020-2 | 
| Reference:
             | 
[4] Leichtweiss, K.: Konvexe Mengen.Hochschulbücher für Mathematik 81 VEB Deutscher Verlag der Wissenschaften, Berlin (1980), German. Zbl 0442.52001, MR 0586235 | 
| Reference:
             | 
[5] Nazarov, F., Ryabogin, D., Zvavitch, A.: On the local equatorial characterization of zonoids and intersection bodies.Adv. Math. 217 (2008), 1368-1380. Zbl 1151.52002, MR 2383902, 10.1016/j.aim.2007.08.013 | 
| Reference:
             | 
[6] Panina, G. Yu.: Representation of an $n$-dimensional body in the form of a sum of $(n-1)$-dimensional bodies.Izv. Akad. Nauk Arm. SSR, Mat. 23 (1988), 385-395 Russian translation in Sov. J. Contemp. Math. Anal. 23 (1988), 91-103. Zbl 0679.52006, MR 0997401 | 
| Reference:
             | 
[7] Schneider, R.: Über eine Integralgleichung in der Theorie der konvexen Körper.Math. Nachr. 44 (1970), 55-75 German. Zbl 0162.54302, MR 0275286, 10.1002/mana.19700440105 | 
| Reference:
             | 
[8] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory.Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1993). Zbl 0798.52001, MR 1216521 | 
| Reference:
             | 
[9] Schneider, R., Weil, W.: Zonoids and Related Topics.Convexity and Its Applications Birkhäuser, Basel (1983), 296-317. Zbl 0524.52002, MR 0731116 | 
| Reference:
             | 
[10] Weil, W.: Blaschkes Problem der lokalen Charakterisierung von Zonoiden.Arch. Math. 29 (1977), 655-659 German. Zbl 0382.52006, MR 0513967, 10.1007/BF01220469 | 
| . |