[3] Bernardis, A. L., Lorente, M., Riveros, M. S.: 
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. Math. Inequal. Appl. 14 (2011), 881-895. 
DOI 10.7153/mia-14-73 | 
MR 2884902 | 
Zbl 1245.42009 
[4] Bernardis, A. L., Pradolini, G., Lorente, M., Riveros, M. S.: 
Composition of fractional Orlicz maximal operators and $A_1$-weights on spaces of homogeneous type. Acta Math. Sin., Engl. Ser. 26 (2010), 1509-1518. 
DOI 10.1007/s10114-010-8445-4 | 
MR 2661130 | 
Zbl 1202.42035 
[5] Cruz-Uribe, D., Fiorenza, A.: 
The $A_\infty$ property for Young functions and weighted norm inequalities. Houston J. Math. 28 (2002), 169-182. 
MR 1876947 | 
Zbl 1041.42009 
[7] Cruz-Uribe, D., Pérez, C.: 
On the two-weight problem for singular integral operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 1 (2002), 821-849. 
MR 1991004 | 
Zbl 1072.42010 
[9] Gorosito, O., Pradolini, G., Salinas, O.: 
Weighted weak-type estimates for multilinear commutators of fractional integrals on spaces of homogeneous type. Acta Math. Sin., Engl. Ser. 23 (2007), 1813-1826. 
DOI 10.1007/s10114-005-0741-z | 
MR 2352296 | 
Zbl 1134.42319 
[10] Gorosito, O., Pradolini, G., Salinas, O.: 
Boundedness of the fractional maximal operator on variable exponent Lebesgue spaces: a short proof. Rev. Unión Mat. Argent. 53 (2012), 25-27. 
MR 2987152 | 
Zbl 1256.42030 
[11] Hardy, G. H., Littlewood, J. E., Pólya, G.: 
Inequalities. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1988). 
MR 0944909 | 
Zbl 0634.26008 
[21] Pérez, C.: 
On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights. Proc. Lond. Math. Soc., III. Ser. 71 (1995), 135-157. 
DOI 10.1112/plms/s3-71.1.135 | 
MR 1327936 | 
Zbl 0829.42019