Previous |  Up |  Next

Article

Title: Some equivalent metrics for bounded normal operators (English)
Author: Jabbarzadeh, Mohammad Reza
Author: Hajipouri, Rana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 2
Year: 2018
Pages: 201-212
Summary lang: English
.
Category: math
.
Summary: Some stronger and equivalent metrics are defined on $\mathcal {M}$, the set of all bounded normal operators on a Hilbert space $H$ and then some topological properties of $\mathcal {M}$ are investigated. (English)
Keyword: Hilbert space
Keyword: normal operator
Keyword: equivalent metrics
Keyword: composition operator
MSC: 47A05
idZBL: Zbl 06890415
idMR: MR3831487
DOI: 10.21136/MB.2017.0101-16
.
Date available: 2018-06-11T11:03:14Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147245
.
Reference: [1] Benharrat, M., Messirdi, B.: Strong metrizability for closed operators and the semi-Fredholm operators between two Hilbert spaces.Int. J. Anal. Appl. 8 (2015), 110-122.
Reference: [2] Cordes, H. O., Labrousse, J. P.: The invariance of the index in the metric space of closed operators.J. Math. Mech. 12 (1963), 693-719. Zbl 0148.12402, MR 0162142
Reference: [3] Gilfeather, F.: Norm conditions on resolvents of similarities of Hilbert space operators and applications to direct sums and integrals of operators.Proc. Am. Math. Soc. 68 (1978), 44-48. Zbl 0381.47003, MR 0475583, 10.2307/2040905
Reference: [4] Kato, T.: Perturbation Theory for Linear Operators.Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1976). Zbl 0342.47009, MR 0407617, 10.1007/978-3-642-66282-9
Reference: [5] Kaufman, W. E.: A stronger metric for closed operators in Hilbert space.Proc. Am. Math. Soc. 90 (1984), 83-87. Zbl 0551.47001, MR 0722420, 10.2307/2044673
Reference: [6] Kittaneh, F.: On some equivalent metrics for bounded operators on Hilbert space.Proc. Am. Math. Soc. 110 (1990), 789-798. Zbl 0721.47013, MR 1027097, 10.2307/2047922
Reference: [7] Labrousse, J. P.: On a metric space of closed operators on a Hilbert space.Univ. Nac. Tucumán, Rev., Ser. A 16 (1966), 45-77. Zbl 0154.15803, MR 0226445
Reference: [8] Labrousse, J. P.: Quelques topologies sur des espaces d'opérateurs dans des espaces de Hilbert et leurs applications.Faculté des Sciences de Nice (Math.) 1 (1970), 47 pages.
Reference: [9] Lambert, A., Petrovic, S.: Beyond hyperinvariance for compact operators.J. Funct. Anal. 219 (2005), 93-108. Zbl 1061.47018, MR 2108360, 10.1016/j.jfa.2004.06.001
Reference: [10] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces.North-Holland Mathematics Studies 179. North-Holland, Amsterdam (1993). Zbl 0788.47021, MR 1246562
.

Files

Files Size Format View
MathBohem_143-2018-2_7.pdf 271.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo