[1] Alberts, B.: Molecular biology of the cell.  6th ed., Garland Science, New York and Abingdon, 2014.
[3] Andresen, M.: 
Structural basis for reversible photoswitching in Dronpa.  Proc. Natl. Acad. Sci. USA 104 (2007), 13005–13009. 
DOI 10.1073/pnas.0700629104[4] Arai, Y., Nagai, T.: 
Extensive use of FRET in biological imaging.  Microscopy 62 (2013), 419–428. 
DOI 10.1093/jmicro/dft037[5] Betzig, E.: 
Imaging intracellular fluorescent proteins at nanometer resolution.  Science 313 (2006), 1642–1645. 
DOI 10.1126/science.1127344[6] Carisey, A.: Fluorescence recovery after photobleaching.  In: Cell Migration Methods in Molecular Biology (Methods and Protocols), Humana Press, 2011.
[7] Cody, C.: 
Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein.  Biochemistry 32 (1993), 1212–1218. 
DOI 10.1021/bi00056a003[9] Černý, J.: Zelený fluorescenční protein.  Vesmír 88 (2009), 228–231.
[10] Day, R. N., Davidson, M. W.: 
The fluorescent protein palette: tools for cellular imaging.  Chem. Soc. Rev. 38 (2009), 2887–2921. 
DOI 10.1039/b901966a[11] Ehrenberg, M.: Scientific background on the Nobel Prize in chemistry 2008.  The Royal Swedish Academy of Sciences, Stockholm, 2008.
[12] Heim, R., Cubitt, A. B., Tsien, R. Y.: 
Improved green fluorescence.  Nature 373 (1995), 663–664. 
DOI 10.1038/373663b0[13] Heim, R., Prasher, D. C., Tsien, R. Y.: 
Wavelength mutations and posttranslational autoxidation of green fluorescent protein.  Proc. Natl. Acad. Sci. USA 91 (1994), 12501–12504. 
DOI 10.1073/pnas.91.26.12501[16] Chudakov, D. M.: 
Fluorescent proteins and their applications in imaging living cells and tissues.  Physiol. Rev. 90 (2010), 1103–1163. 
DOI 10.1152/physrev.00038.2009[17] Kanehira, K., Uchida, Y., Saito, T.: 
Visualization of avian influenza virus infected cells using self-assembling fragments of green fluorescent protein.  Electron. J. Biotechnol. 19 (2016), 61–64. 
DOI 10.1016/j.ejbt.2015.08.008[19] Kiyonaka, S.: 
Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells.  Nat. Methods 10 (2013), 1232–1238. 
DOI 10.1038/nmeth.2690[20] Koldenkova, V. P., Nagai, T.: 
Genetically encoded Ca$^{2+}$ indicators: Properties and evaluation.  Biochim. Biophys. Acta 1833 (2013), 1787–1797. 
DOI 10.1016/j.bbamcr.2013.01.011[21] Labas, Y. A.: 
Diversity and evolution of the green fluorescent protein family.  Proc. Natl. Acad. Sci. USA 99 (2002), 4256–4261. 
DOI 10.1073/pnas.062552299[22] Lakowicz, J. R.: Principles of fluorescence spectroscopy.  Springer US, Boston, 2006.
[23] Lippincott-Schwartz, J., Patterson, G. H.: 
Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging.  Trends Cell Biol. 19 (2009), 555–565. 
DOI 10.1016/j.tcb.2009.09.003[24] Livet, J.: 
Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system.  Nature 450 (2007), 56–62. 
DOI 10.1038/nature06293[25] Lukyanov, K. A.: 
Photoactivatable fluorescent proteins.  Nat. Rev. Mol. Cell Biol. 6 (2005), 885–891. 
DOI 10.1038/nrm1741[26] Martynov, V. I.: 
Genetically encoded fluorescent indicators for live cell pH imaging.  Biochim. Biophys. Acta 1862 (2018), 2924–2939. 
DOI 10.1016/j.bbagen.2018.09.013[27] Merola, F.: 
Engineering fluorescent proteins towards ultimate performances: lessons from the newly developed cyan variants.  Methods Appl. Fluoresc. 4 (2016), [online] 012001. 
DOI 10.1088/2050-6120/4/1/012001[28] Miesenbock, G., De Angelis, D. A., Rothman, J. E.: 
Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins.  Nature 394 (1998), 192–195. 
DOI 10.1038/28190[30] Miyawaki, A.: 
Fluorescent indicators for Ca$^{2+}$ based on green fluorescent proteins and calmodulin.  Nature 388 (1997), 882–887. 
DOI 10.1038/42264[31] Morise, H.: 
Intermolecular energy transfer in the bioluminescent system of Aequorea.  Biochemistry 13 (1974), 2656–2662. 
DOI 10.1021/bi00709a028[32] Orij, R.: 
In vivo measurement of cytosolic and mitochondrial pH using a pHsensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth.  Microbiology 155 (2009), 268–278. 
DOI 10.1099/mic.0.022038-0[34] Plášek, J.: Optická mikroskopie od van Leeuwenhoeka k Nobelově ceně za chemii v roce 2014.  Čs. čas. fyz. 65 (2015), 365–369.
[35] Plášek, J.: Superrozlišení v optické mikroskopii: Nobelova cena za chemii za rok 2014.  Pokroky Mat. Fyz. Astronom. 60 (2015), 19–38.
[36] Reits, E. A. J., Neefjes, J. J.: 
From fixed to FRAP: measuring protein mobility and activity in living cells.  Nat. Cell Biol. 3 (2001), E145–E147. 
DOI 10.1038/35078615[37] Roda, A.: Discovery and development of the green fluorescent protein, GFP: the 2008 Nobel Prize.  Anal. Bioanal. Chem. 396 (2010), 1619–1622.
[38] San Pietro, R. M., Prendergast, F. G., Ward, W. W.: Sequence of the chromogenic hexapeptide of Renilla green fluorescent protein.  Photochem. Photobiol. 57 (1993), S63.
[39] Shaner, N. C.: 
Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein.  Nat. Biotechnol. 22 (2004), 1567–1572. 
DOI 10.1038/nbt1037[40] Shaner, N. C., Steinbach, P. A., Tsien, R. Y.: 
A guide to choosing fluorescent proteins.  Nat. Methods 2 (2005), 905–909. 
DOI 10.1038/nmeth819[41] Shimizu, K.: 
Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.  Bioinspir. Biomim. 13 (2018), 041003. 
DOI 10.1088/1748-3190/aabbe9[45] Tsien, R. Y.: 
Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture).  Angew. Chem. Int. Ed. Engl. 48 (2009), 5612–5626. 
DOI 10.1002/anie.200901916[47] Verkhusha, V. V.: 
Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins.  Chem. Biol. 11 (2004), 845–854. 
DOI 10.1016/j.chembiol.2004.04.007[48] Wallrabe, H., Periasamy, A.: 
Imaging protein molecules using FRET and FLIM microscopy.  Curr. Opin. Biotechnol. 16 (2005), 19–27. 
DOI 10.1016/j.copbio.2004.12.002[49] Wan, H. Y.: 
Generation of two-color transgenic zebrafish using the green and red fluorescent protein reporter genes gfp and rfp.  Mar. Biotechnol. 4 (2002), 146–154. 
DOI 10.1007/s10126-001-0085-3[50] Wang, Y. X., Shyy, J. Y. J., Chien, S.: 
Fluorescence proteins, live-cell imaging, and mechanobiology: Seeing is believing.  Annu. Rev. Biomed. Eng. 10 (2008), 1–38. 
DOI 10.1146/annurev.bioeng.010308.161731[51] Ward, W. W.: 
Spectrophotometric identity of the energy-transfer chromophores in Renilla and Aequorea green-fluorescent protein.  Photochem. Photobiol. 31 (1980), 611–615. 
DOI 10.1111/j.1751-1097.1980.tb03755.x[52] Warner, K. D.: 
Structural basis for activity of highly efficient RNA mimics of green fluorescent protein.  Nat. Struct. Mol. Biol. 21 (2014), 658–663. 
DOI 10.1038/nsmb.2865[53] Weissman, T. A., Pan, Y. A.: 
Brainbow: New resources and emerging biological applications for multicolor genetic labeling and analysis.  Genetics 199 (2015), 293–306. 
DOI 10.1534/genetics.114.172510[54] Yang, F., Moss, L. G., Phillips, G. N.: 
The molecular structure of green fluorescent protein.  Nat. Biotechnol. 14 (1996), 1246–1251. 
DOI 10.1038/nbt1096-1246[55] Zimmer, M.: Green fluorescent protein: (GFP): Applications, structure, and related photophysical behavior.  Chem. Rev. 102 (2002), 759–781.
[56] Zimmer, M.: 
GFP – from jellyfish to the Nobel prize and beyond.  Chem. Soc. Rev. 38 (2009), 2823–2832. 
DOI 10.1039/b904023d