| Title:
|
Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters (English) |
| Author:
|
Li, Yali |
| Author:
|
Chen, Xiaoyou |
| Author:
|
Li, Huimin |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
69 |
| Issue:
|
1 |
| Year:
|
2019 |
| Pages:
|
173-181 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters. (English) |
| Keyword:
|
$p$-group |
| Keyword:
|
nonlinear irreducible character |
| Keyword:
|
non-faithful character |
| MSC:
|
20C15 |
| idZBL:
|
Zbl 07088777 |
| idMR:
|
MR3923582 |
| DOI:
|
10.21136/CMJ.2018.0230-17 |
| . |
| Date available:
|
2019-03-08T14:59:14Z |
| Last updated:
|
2021-04-05 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147625 |
| . |
| Reference:
|
[1] Berkovich, Ya. G., Zhmud', E. M.: Characters of Finite Groups. Part 2.Translations of Mathematical Monographs 181, American Mathematical Society, Providence (1998). Zbl 0934.20009, MR 1486039 |
| Reference:
|
[2] Fernández-Alcober, G. A., Moretó, A.: Groups with two extreme character degrees and their normal subgroups.Trans. Am. Math. Soc. 353 (2001), 2171-2192. Zbl 0968.20005, MR 1814066, 10.1090/S0002-9947-01-02685-X |
| Reference:
|
[3] : The GAP Group.GAP---Groups, Algorithms, and Programming, Version 4.8.3 (2016), http://www.gap-system.org. |
| Reference:
|
[4] Iranmanesh, A., Saeidi, A.: Finite groups with a unique nonlinear nonfaithful irreducible character.Arch. Math., Brno 47 (2011), 91-98. Zbl 1249.20009, MR 2813535 |
| Reference:
|
[5] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69, Academic Press, New York (1976). Zbl 0337.20005, MR 0460423, 10.1090/chel/359 |
| Reference:
|
[6] Saeidi, A.: Classification of solvable groups possessing a unique nonlinear non-faithful irreducible character.Cent. Eur. J. Math. 12 (2014), 79-83. Zbl 1287.20013, MR 3121823, 10.2478/s11533-013-0327-4 |
| Reference:
|
[7] Seitz, G. M.: Finite groups having only one irreducible representation of degree greater than one.Proc. Am. Math. Soc. 19 (1968), 459-461. Zbl 0244.20010, MR 0222160, 10.2307/2035551 |
| Reference:
|
[8] Wang, H., Chen, X., Zeng, J.: Zeros of Brauer characters.Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1435-1440. Zbl 1274.20007, MR 2927433, 10.1016/S0252-9602(12)60112-X |
| Reference:
|
[9] Zhang, G. X.: Finite groups with exactly two nonlinear irreducible characters.Chin. Ann. Math., Ser. A 17 (1996), 227-232 Chinese. Zbl 0856.20008, MR 1397112 |
| . |