| Title:
             | 
The dyadic fractional diffusion kernel as a central limit (English) | 
| Author:
             | 
Aimar, Hugo | 
| Author:
             | 
Gómez, Ivana | 
| Author:
             | 
Morana, Federico | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
69 | 
| Issue:
             | 
1 | 
| Year:
             | 
2019 | 
| Pages:
             | 
235-255 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We obtain the fundamental solution kernel of dyadic diffusions in $\mathbb {R}^+$ as a central limit of dyadic mollification of iterations of stable Markov kernels. The main tool is provided by the substitution of classical Fourier analysis by Haar wavelet analysis. (English) | 
| Keyword:
             | 
central limit theorem | 
| Keyword:
             | 
dyadic diffusion | 
| Keyword:
             | 
fractional diffusion | 
| Keyword:
             | 
stable process | 
| Keyword:
             | 
wavelet analysis | 
| MSC:
             | 
35R11 | 
| MSC:
             | 
60F05 | 
| MSC:
             | 
60G52 | 
| idZBL:
             | 
Zbl 07088782 | 
| idMR:
             | 
MR3923587 | 
| DOI:
             | 
10.21136/CMJ.2018.0274-17 | 
| . | 
| Date available:
             | 
2019-03-08T15:01:18Z | 
| Last updated:
             | 
2021-04-05 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/147630 | 
| . | 
| Reference:
             | 
[1] Actis, M., Aimar, H.: Dyadic nonlocal diffusions in metric measure spaces.Fract. Calc. Appl. Anal. 18 (2015), 762-788. Zbl 1320.43003, MR 3351499, 10.1515/fca-2015-0046 | 
| Reference:
             | 
[2] Actis, M., Aimar, H.: Pointwise convergence to the initial data for nonlocal dyadic diffusions.Czech. Math. J. 66 (2016), 193-204. Zbl 06587883, MR 3483232, 10.1007/s10587-016-0249-y | 
| Reference:
             | 
[3] Aimar, H., Bongioanni, B., Gómez, I.: On dyadic nonlocal Schrödinger equations with Besov initial data.J. Math. Anal. Appl. 407 (2013), 23-34. Zbl 1306.35106, MR 3063102, 10.1016/j.jmaa.2013.05.001 | 
| Reference:
             | 
[4] Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications.Lecture Notes of the Unione Matematica Italiana 20, Springer, Cham (2016). Zbl 06559661, MR 3469920, 10.1007/978-3-319-28739-3 | 
| Reference:
             | 
[5] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian.Commun. Partial Differ. Equations 32 (2007), 1245-1260. Zbl 1143.26002, MR 2354493, 10.1080/03605300600987306 | 
| Reference:
             | 
[6] Chung, K. L.: A Course in Probability Theory.Academic Press, San Diego (2001). Zbl 0980.60001, MR 1796326 | 
| Reference:
             | 
[7] Dipierro, S., Medina, M., Valdinoci, E.: Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb R^n$.Appunti. Scuola Normale Superiore di Pisa (Nuova Series) 15, Edizioni della Normale, Pisa (2017). Zbl 06684812, MR 3617721, 10.1007/978-88-7642-601-8 | 
| Reference:
             | 
[8] Valdinoci, E.: From the long jump random walk to the fractional Laplacian.Bol. Soc. Esp. Mat. Apl., S$\vec{ {e}}$MA 49 (2009), 33-44. Zbl 1242.60047, MR 2584076 | 
| Reference:
             | 
[9] Wojtaszczyk, P.: A Mathematical Introduction to Wavelets.London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge (1997). Zbl 0865.42026, MR 1436437, 10.1017/CBO9780511623790 | 
| . |