[2] Alaghmandan M., Nasr-Isfahani R., Nemati M.: 
On $\phi$-contractibility of the Lebesgue-Fourier algebra of a locally compact group. Arch. Math. (Basel) 95 (2010), no. 4, 373–379. 
DOI 10.1007/s00013-010-0177-2 | 
MR 2727314[3] Choi Y., Ghahramani F., Zhang Y.: 
Approximate and pseudo-amenability of various classes of Banach algebras. J. Funct. Anal. 256 (2009), no. 10, 3158–3191. 
DOI 10.1016/j.jfa.2009.02.012 | 
MR 2504522[4] Dashti M., Nasr-Isfahani R., Soltani Renani S.: 
Character amenability of Lipschitz algebras. Canad. Math. Bull. 57 (2014), no. 1, 37–41. 
DOI 10.4153/CMB-2012-015-3 | 
MR 3150714[5] Dales H. G., Lau A. T.-M., Strauss D.: 
Banach algebras on semigroups and on their compactifications. Mem. Amer. Math. Soc. 205 (2010), no. 966, 165 pages. 
MR 2650729[14] Jabbari A., Abad T. M., Abadi M. Z.: 
On $\phi$-inner amenable Banach algebras. Colloq. Math. 122 (2011), no. 1, 1–10. 
DOI 10.4064/cm122-1-1 | 
MR 2755887[16] Nasr-Isfahani R., Soltani Renani S.: 
Character contractibility of Banach algebras and homological properties of Banach modules. Studia Math. 202 (2011), no. 3, 205–225. 
DOI 10.4064/sm202-3-1 | 
MR 2771651[17] Runde V.: 
Lectures on Amenability. Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. 
MR 1874893[19] Sahami A.: 
On biflatness and $\phi$-biflatness of some Banach algebras. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 1, 111–122. 
MR 3785185[20] Sahami A., Pourabbas A.: 
On $\phi$-biflat and $\phi$-biprojective Banach algebras. Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 5, 789–801. 
DOI 10.36045/bbms/1385390764 | 
MR 3160589