[1] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.: 
$H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. 
DOI 10.1109/tcyb.2018.2885567 
[2] Chen, W., Ding, D., Dong, H., Wei, G.: 
Distributed resilient filtering for power systems subject to denial-of-service attacks. IEEE Trans. Systems Man Cybernet.: Systems49 (2019), 8, 1688-1697. 
DOI 10.1109/tsmc.2019.2905253 
[3] Ding, D., Wang, Z., Han, Q.-L.: 
A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans. Automat. Control. 1-11. 
DOI 10.1109/tac.2019.2934389 
[4] Ding, D., Wang, Z., Han, Q.-L., Wei, G.: 
Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet, 49 (2019), 6, 2372-2384. 
DOI 10.1109/tcyb.2018.2827037 
[5] Dong, H., Wang, Z., Ho, D., Gao, H.: 
Variance-constrained $H_\infty$ filtering for nonlinear time-varying stochastic systems with multiple missing measurements: The finite-horizon case. IEEE Trans. Signal Process. 58 (2010), 5, 2534-2543. 
DOI 10.1109/tsp.2010.2042489 | 
MR 2789403 
[6] Ge, X., Han, Q.-L.: 
Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans. Industr. Electron. 64 (2017), 10, 8118-8127. 
DOI 10.1109/tie.2017.2701778 
[7] Ge, X., Han, Q.-L., Wang, Z.: 
A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. 
DOI 10.1109/tcyb.2017.2789296 
[8] Ge, X., Han, Q.-L., Wang, Z.: 
A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 1, 171-183. 
DOI 10.1109/tcyb.2017.2769722 
[9] Hu, C., Qin, W., He, B., Liu, G.: 
Distributed $H_\infty$ estimation for moving target under switching multi-agent network. Kybernetika 51 (2015), 5, 814-829. 
DOI 10.14736/kyb-2015-5-0814 | 
MR 3445986 
[11] Liang, Y., Chen, T., Pan, Q.: 
Multi-rate stochastic $H_\infty$ filtering for networked multi-sensor fusion. Kybernetika 46 (2010), 2, 437-444. 
MR 2877091 
[12] Liu, S., Wang, Z., Wang, L., Wei, G.: 
On quantized $H_\infty$ filtering for multi-rate systems under stochastic communication protocols: The finite-horizon case. Inform. Sci. 459 (2018), 211-223. 
DOI 10.1016/j.ins.2018.02.050 | 
MR 3811013 
[13] Lv, B., Huang, Y., Li, T., Dai, X., He, M., Zhang, W., Yang, Y.: 
Simulation and performance analysis of the IEEE$1588$ PTP with Kalman filtering in multi-hop wireless sensor networks. J. Networks 9 (2014), 12, 3445-53. 
DOI 10.4304/jnw.9.12.3445-3453 
[14] Ma, L., Wang, Z., Hu, J., Bo, Y., Guo, Z.: 
Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements. Signal Process. 90 (2010), 6, 2060-2071. 
DOI 10.1016/j.sigpro.2010.01.010 | 
MR 2987050 
[15] Ma, L., Xu, M., Jia, R., Ye, H.: 
Exponential $H_\infty$ filter design for stochastic markovian jump systems with both discrete and distributed time-varying delays. Kybernetika 50 (2014), 4, 491-511. 
DOI 10.14736/kyb-2014-4-0491 | 
MR 3275081 
[16] Shen, B., Tan, H., Wang, Z., Huang, T.: 
Quantized/saturated control for sampleddata systems under noisy sampling intervals: a confluent vandermonde matrix approach. IEEE Trans. Automat. Control 62 (2017), 9, 4753-4759. 
DOI 10.1109/tac.2017.2685083 | 
MR 3691900 
[17] Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: 
Kalman filtering with intermittent observations. IEEE Trans. Automat. Control 49 (2004), 9, 1453-1464. 
DOI 10.1109/tac.2004.834121 | 
MR 2086911 
[19] Subramanian, A., Sayed, A. H.: 
Multiobjective filter design for uncertain stochastic time-delay systems. IEEE Trans. Automat. Control 49 (2004), 1, 149-154. 
DOI 10.1109/tac.2003.821422 | 
MR 2028557 
[20] Tan, H., Shen, B., Liu, Y., Alsaedi, A., Ahmad, B.: 
Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises. Inform. Fusion 36 (2017), 313-320. 
DOI 10.1016/j.inffus.2016.12.003 
[21] Tian, F., Cui, B.: Consensus based minimum variance filter with packet dropouts. Computer Engrg. Appl. 52 (2016), 12, 123-6, 157.
[23] Xiao, Y., Cao, Y., Lin, Z.: 
Robust filtering for discrete-time systems with saturation and its application to transmultiplexers. IEEE Trans. Signal Process. 52 (2004), 5, 1266-1277. 
DOI 10.1109/tsp.2004.826180 | 
MR 2061982 
[26] Zhang, X.-M, Han, Q.-L.: 
A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. 
DOI 10.1109/tcyb.2015.2487420 
[27] Zhang, X.-M, Han, Q.-L., Zhang., B.: 
An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Industr. Inform. 13 (2017), 1, 4-16. 
DOI 10.1109/tii.2016.2607150 
[28] Zhang, X.-M, Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: 
Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17. 
DOI 10.1109/jas.2019.1911651 | 
MR 3748030 
[29] Zhang, Y., Wang, Z., Ma, L.: 
Variance-Constrained state estimation for networked multi-rate systems with measurement quantization and probabilistic sensor failures. Int. J. Robust Nonlinear Control 26 (2016), 16, 3507-3523. 
DOI 10.1002/rnc.3520 | 
MR 3565746 
[30] Zhang, Y., Wang, Z., Zou, L., Fang, H.: 
Event-based finite-time filtering for multirate systems with fading measurements. IEEE Trans. Aerospace Electron. Systems 53 (2017), 3, 1431-1441. 
DOI 10.1109/taes.2017.2671498 
[31] Zhong, M., Ye, H., Ding, S., Wang, G.: 
Observer-based fast rate fault detection for a class of multirate sampled-data systems. IEEE Trans. Automat. Control 52 (2007), 3, 520-525. 
DOI 10.1109/tac.2006.890488 | 
MR 2300484 
[32] Zou, L., Wang, Z., Hu, J., Gao, H.: 
On $H_\infty$ finite-horizon filtering under stochastic protocol: dealing with high-rate communication networks. IEEE Trans. Automat. Control 62 (2017), 9, 4884-4890. 
DOI 10.1109/tac.2017.2691310 | 
MR 3691918