| Title:
             | 
Nonexistence of entire positive solution for a conformal $k$-Hessian inequality (English) | 
| Author:
             | 
Jiang, Feida | 
| Author:
             | 
Cui, Saihua | 
| Author:
             | 
Li, Gang | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
70 | 
| Issue:
             | 
2 | 
| Year:
             | 
2020 | 
| Pages:
             | 
311-322 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper, we study the nonexistence of entire positive solution for a conformal $k$-Hessian inequality in $\mathbb {R}^n$ via the method of proof by contradiction. (English) | 
| Keyword:
             | 
conformal Hessian inequality | 
| Keyword:
             | 
entire positive solution | 
| MSC:
             | 
35B08 | 
| MSC:
             | 
35B09 | 
| MSC:
             | 
35J60 | 
| idZBL:
             | 
07217137 | 
| idMR:
             | 
MR4111845 | 
| DOI:
             | 
10.21136/CMJ.2019.0289-18 | 
| . | 
| Date available:
             | 
2020-06-17T12:30:21Z | 
| Last updated:
             | 
2022-07-04 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/148231 | 
| . | 
| Reference:
             | 
[1] Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire.J. Math. Pur. Appl., IX. Sér. 55 (1976), 269-296 French. Zbl 0336.53033, MR 0431287 | 
| Reference:
             | 
[2] Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev.J. Diff. Geom. 11 (1976), 573-598 French. Zbl 0371.46011, MR 0448404, 10.4310/jdg/1214433725 | 
| Reference:
             | 
[3] Bao, J., Ji, X., Li, H.: Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations.J. Differ. Equations 253 (2012), 2140-2160. Zbl 1260.35044, MR 2946967, 10.1016/j.jde.2012.06.018 | 
| Reference:
             | 
[4] Brezis, H.: Semilinear equations in $\mathbb{R}^N$ without condition at infinity.Appl. Math. Optimization 12 (1984), 271-282. Zbl 0562.35035, MR 0768633, 10.1007/BF01449045 | 
| Reference:
             | 
[5] Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth.Commun. Pure Appl. Math. 42 (1989), 271-297. Zbl 0702.35085, MR 0982351, 10.1002/cpa.3160420304 | 
| Reference:
             | 
[6] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations III: Functions of the eigenvalues of the Hessian.Acta Math. 155 (1985), 261-301. Zbl 0654.35031, MR 0806416, 10.1007/BF02392544 | 
| Reference:
             | 
[7] Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations.Commun. Pure Appl. Math. 34 (1981), 525-598. Zbl 0465.35003, MR 0615628, 10.1002/cpa.3160340406 | 
| Reference:
             | 
[8] Ji, X., Bao, J.: Necessary and sufficient conditions on solvability for Hessian inequalities.Proc. Am. Math. Soc. 138 (2010), 175-188. Zbl 1180.35234, MR 2550182, 10.1090/S0002-9939-09-10032-1 | 
| Reference:
             | 
[9] Jiang, F., Trudinger, N. S.: Oblique boundary value problems for augmented Hessian equations I.Bull. Math. Sci. 8 (2018), 353-411. Zbl 1411.35116, MR 3826768, 10.1007/s13373-018-0124-2 | 
| Reference:
             | 
[10] Jiang, F., Trudinger, N. S., Yang, X.-P.: On the Dirichlet problem for a class of augmented Hessian equations.J. Differ. Equations 258 (2015), 1548-1576. Zbl 1309.35027, MR 3295592, 10.1016/j.jde.2014.11.005 | 
| Reference:
             | 
[11] Jin, Q., Li, Y., Xu, H.: Nonexistence of positive solutions for some fully nonlinear elliptic equations.Methods Appl. Anal. 12 (2005), 441-449. Zbl 1143.35322, MR 2258318, 10.4310/MAA.2005.v12.n4.a5 | 
| Reference:
             | 
[12] Keller, J. B.: On solutions of $\Delta u=f(u)$.Commun. Pure Appl. Math. 10 (1957), 503-510. Zbl 0090.31801, MR 0091407, 10.1002/cpa.3160100402 | 
| Reference:
             | 
[13] Li, A., Li, Y. Y.: On some conformally invariant fully nonlinear equations II: Liouville, Harnack and Yamabe.Acta Math. 195 (2005), 117-154. Zbl 1216.35038, MR 2233687, 10.1007/BF02588052 | 
| Reference:
             | 
[14] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific Publishing, Singapore (1996). Zbl 0884.35001, MR 1465184, 10.1142/3302 | 
| Reference:
             | 
[15] Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations.Contributions to Analysis: A Collection of Papers Dedicated to Lipman Bers Academic Press, New York (1974), 245-272. Zbl 0298.35018, MR 0358078 | 
| Reference:
             | 
[16] Osserman, R.: On the inequality $\Delta u\ge f(u)$.Pac. J. Math. 7 (1957), 1641-1647. Zbl 0083.09402, MR 0098239, 10.2140/pjm.1957.7.1641 | 
| Reference:
             | 
[17] Ou, Q.: Nonexistence results for Hessian inequality.Methods Appl. Anal. 17 (2010), 213-224. Zbl 1211.35293, MR 2763578, 10.4310/MAA.2010.v17.n2.a5 | 
| Reference:
             | 
[18] Ou, Q.: Singularities and Liouville theorems for some special conformal Hessian equations.Pac. J. Math. 266 (2013), 117-128. Zbl 1284.35179, MR 3105779, 10.2140/pjm.2013.266.117 | 
| Reference:
             | 
[19] Ou, Q.: A note on nonexistence of conformal Hessian inequalities.Adv. Math., Beijing 46 (2017), 154-158. Zbl 1389.26062, MR 3627002 | 
| Reference:
             | 
[20] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature.J. Differ. Geom. 20 (1984), 479-495. Zbl 0576.53028, MR 0788292, 10.4310/jdg/1214439291 | 
| Reference:
             | 
[21] Sheng, W., Trudinger, N. S., Wang, X.-J.: The $k$-Yamabe problem.Surv. Differ. Geom. 17 (2012), 427-457. Zbl 1382.53013, MR 3076067, 10.4310/SDG.2012.v17.n1.a10 | 
| Reference:
             | 
[22] Trudinger, N. S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 265-274. Zbl 0159.23801, MR 0240748 | 
| Reference:
             | 
[23] Trudinger, N. S.: Recent developments in elliptic partial differential equations of Monge-Ampère type.International Congress of Mathematicians. Vol. III European Mathematical Society, Zürich (2006), 291-302. Zbl 1130.35058, MR 2275682, 10.4171/022-3/15 | 
| Reference:
             | 
[24] Viaclovsky, J. A.: Conformal geometry, contact geometry, and the calculus of variations.Duke Math. J. 101 (2000), 283-316. Zbl 0990.53035, MR 1738176, 10.1215/S0012-7094-00-10127-5 | 
| Reference:
             | 
[25] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds.Osaka Math. J. 12 (1960), 21-37. Zbl 0096.37201, MR 0125546 | 
| . |