[2] Lupaş, A. Alb: 
On special fuzzy differerential subordinations using convolution product of Sălăgean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 15 (2013), 1484-1489. 
MR 3075680 | 
Zbl 1290.30013 
[5] Aouf, M. K.: 
The Komatu integral operator and strongly close-to-convex functions. Bull. Math. Anal. Appl. 3 (2011), 209-219. 
MR 2955361 | 
Zbl 1314.30017 
[7] Bulboacă, T.: Differential Subordinations and Superordinations: Recent Results. House of Scientic Book Publ., Cluj-Napoca (2005).
[8] Ebadian, A., Najafzadeh, S.: 
Uniformly starlike and convex univalent functions by using certain integral operators. Acta Univ. Apulensis, Math. Inform. 20 (2009), 17-23. 
MR 2656769 | 
Zbl 1224.30046 
[9] El-Ashwah, R. M., Aouf, M. K., El-Deeb, S. M.: 
Differential subordination for certain subclasses of $p$-valent functions associated with generalized linear operator. J. Math. 2013 (2013), Article ID 692045, 8 pages. 
DOI 10.1155/2013/692045 | 
MR 3100736 | 
Zbl 1268.30011 
[10] Gal, S. G., Ban, A. I.: Elemente de Matematica Fuzzy. University of Oradea, Oradea (1996), Romanian.
[11] Khairnar, S. M., More, M.: 
On a subclass of multivalent $\beta$-uniformly starlike and convex functions defined by a linear operator. IAENG, Int. J. Appl. Math. 39 (2009), 175-183. 
MR 2554929 | 
Zbl 1229.30008 
[12] Komatu, Y.: 
On analytic prolongation of a family of integral operators. Math., Rev. Anal. Numér. Théor. Approximation, Math. 32(55) (1990), 141-145. 
MR 1159903 | 
Zbl 0753.30005 
[14] Oros, G. I., Oros, G.: 
The notation of subordination in fuzzy sets theory. Gen. Math. 19 (2011), 97-103. 
MR 2879082 | 
Zbl 1265.03050 
[15] Oros, G. I., Oros, G.: 
Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babeş-Bolyai, Math. 57 (2012), 239-248. 
MR 2974592 | 
Zbl 1274.30059 
[16] Oros, G. I., Oros, G.: 
Fuzzy differential subordination. Acta Univ. Apulensis, Math. Inform. 30 (2012), 55-64. 
MR 3025317 | 
Zbl 1289.30155 
[17] Raina, R. K., Bapna, I. B.: 
On the starlikeness and convexity of a certain integral operator. Southeast Asian Bull. Math. 33 (2009), 101-108. 
MR 2481938 | 
Zbl 1212.30066 
[18] Sălăgean, G. S.: 
Subclasses of univalent functions. Complex Analysis -- Fifth Romanian-Finnish Seminar Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. 
DOI 10.1007/BFb0066543 | 
MR 738107 | 
Zbl 0531.30009