Previous |  Up |  Next

Article

Title: Discretization of prime counting functions, convexity and the Riemann hypothesis (English)
Author: Alkan, Emre
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 15-48
Summary lang: English
.
Category: math
.
Summary: We study tails of prime counting functions. Our approach leads to representations with a main term and an error term for the asymptotic size of each tail. It is further shown that the main term is of a specific shape and can be written discretely as a sum involving probabilities of certain events belonging to a perturbed binomial distribution. The limitations of the error term in our representation give us equivalent conditions for various forms of the Riemann hypothesis, for classical type zero-free regions in the case of the Riemann zeta function and the size of semigroups of integers in the sense of Beurling. Inspired by the works of Panaitopol, asymptotic companions pertaining to the magnitude of specific prime counting functions are obtained in terms of harmonic numbers, hyperharmonic numbers and the number of indecomposable permutations. By introducing the notion of asymptotic convexity and fusing it with a nice generalization of an inequality of Ramanujan due to Hassani, we arrive at a curious asymptotic inequality for the classical prime counting function at any convex combination of its arguments and further show that quotients arising from prime counting functions of progressions furnish examples of asymptotically convex, but not convex functions. (English)
Keyword: prime counting function
Keyword: discretization
Keyword: Riemann hypothesis
Keyword: harmonic number
Keyword: indecomposable permutation
Keyword: asymptotic convexity
MSC: 11A41
MSC: 11N05
MSC: 11N37
idZBL: Zbl 07655754
idMR: MR4541088
DOI: 10.21136/CMJ.2022.0280-21
.
Date available: 2023-02-03T11:07:00Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151503
.
Reference: [1] Alkan, E.: On Dirichlet $L$-functions with periodic coefficients and Eisenstein series.Monatsh. Math. 163 (2011), 249-280. Zbl 1278.11081, MR 2805873, 10.1007/s00605-010-0211-2
Reference: [2] Alkan, E.: Distribution of averages of Ramanujan sums.Ramanujan J. 29 (2012), 385-408. Zbl 1297.11092, MR 2994108, 10.1007/s11139-012-9424-4
Reference: [3] Alkan, E.: Ramanujan sums and the Burgess zeta function.Int. J. Number Theory 8 (2012), 2069-2092. Zbl 1323.11062, MR 2978857, 10.1142/S1793042112501187
Reference: [4] Alkan, E.: Biased behavior of weighted Mertens sums.Int. J. Number Theory 16 (2020), 547-577. Zbl 1437.11128, MR 4079395, 10.1142/S1793042120500281
Reference: [5] Alkan, E.: Inequalities between sums over prime numbers in progressions.Res. Number Theory 6 (2020), Article ID 36, 29 pages. Zbl 07304531, MR 4150473, 10.1007/s40993-020-00211-3
Reference: [6] Alkan, E.: Variations on criteria of Pólya and Turán for the Riemann hypothesis.J. Number Theory 225 (2021), 90-124. Zbl 07355818, MR 4231545, 10.1016/j.jnt.2021.01.004
Reference: [7] Alkan, E., Zaharescu, A.: $B$-free numbers in short arithmetic progressions.J. Number Theory 113 (2005), 226-243. Zbl 1138.11339, MR 2153277, 10.1016/j.jnt.2004.10.003
Reference: [8] Benjamin, A. T., Gaebler, D., Gaebler, R.: A combinatorial approach to hyperharmonic numbers.Integers 3 (2003), Article ID A15, 9 pages. Zbl 1128.11309, MR 2036481
Reference: [9] Berndt, B. C.: Ramanujan's Notebooks. Part IV.Springer, New York (1994). Zbl 0785.11001, MR 1261634, 10.1007/978-1-4612-0879-2
Reference: [10] Cobeli, C., Panaitopol, L., Vâjâitu, M., Zaharescu, A.: Some asymptotic formulas involving primes in arithmetic progressions.Comment. Math. Univ. St. Pauli 53 (2004), 23-35. Zbl 1065.11074, MR 2084357
Reference: [11] Comtet, L.: Sur les coefficients de l'inverse de la série formelle $\sum n!t^n$.C. R. Acad. Sci., Paris, Sér. A 275 (1972), 569-572 French. Zbl 0246.05003, MR 0302457
Reference: [12] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions.D. Reidel, Dordrecht (1974). Zbl 0283.05001, MR 0460128, 10.1007/978-94-010-2196-8
Reference: [13] Conway, J. H., Guy, R. K.: The Book of Numbers.Springer, Berlin (1996). Zbl 0866.00001, MR 1411676, 10.1007/978-1-4612-4072-3
Reference: [14] Davenport, H.: Multiplicative Number Theory.Graduate Texts in Mathematics 74. Springer, New York (2000). Zbl 1002.11001, MR 1790423, 10.1007/978-1-4757-5927-3
Reference: [15] Camargo, A. P. de, Martin, P. A.: Constant components of the Mertens function and its connections with Tschebyschef's Theory for counting prime numbers.(to appear) in Bull. Braz. Math. Soc. (N.S.). MR 4418781, 10.1007/s00574-021-00267-4
Reference: [16] Ford, K.: Vinogradov's integral and bounds for the Riemann zeta function.Proc. Lond. Math. Soc., III. Ser. 85 (2002), 565-633. Zbl 1034.11044, MR 1936814, 10.1112/S0024611502013655
Reference: [17] Grosswald, É.: Sur l'ordre de grandeur des différences $\psi(x)-x$ et $\pi(x)-{ li} x$.C. R. Acad. Sci., Paris 260 (1965), 3813-3816 French. Zbl 0127.02005, MR 0179146
Reference: [18] Hassani, M.: Approximation of $\pi(x)$ by $\Psi(x)$.JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Articles ID 7, 7 pages. Zbl 1137.11009, MR 2217170
Reference: [19] Hassani, M.: On an inequality of Ramanujan concerning the prime counting function.Ramanujan J. 28 (2012), 435-442. Zbl 1286.11010, MR 2950516, 10.1007/s11139-011-9362-6
Reference: [20] Hassani, M.: Generalizations of an inequality of Ramanujan concerning prime counting function.Appl. Math. E-Notes 13 (2013), 148-154. Zbl 1286.11011, MR 3141823
Reference: [21] Hassani, M.: Remarks on Ramanujan's inequality concerning the prime counting function.Commun. Math. 29 (2021), 473-482. Zbl 07484381, MR 4355420, 10.2478/cm-2021-0014
Reference: [22] Ingham, A. E.: The Distribution of Prime Numbers.Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, London (1932). Zbl 0006.39701, MR 0184920
Reference: [23] King, A.: Generating indecomposable permutations.Discrete Math. 306 (2006), 508-518. Zbl 1086.05004, MR 2212519, 10.1016/j.disc.2006.01.005
Reference: [24] Littlewood, J. E.: Sur la distribution des nombres premiers.C. R. Acad. Sci., Paris 158 (1914), 1869-1872 French \99999JFM99999 45.0305.01.
Reference: [25] Malliavin, P.: Sur le reste de la loi asymptotique de répartition des nombres premiers généralisés de Beurling.Acta Math. 106 (1961), 281-298 French. Zbl 0102.28204, MR 0142518, 10.1007/BF02545789
Reference: [26] Mincu, G., Panaitopol, L.: Properties of some functions connected to prime numbers.JIPAM, J. Inequal. Pure Appl. Math. 9 (2008), Article ID 12, 10 pages. Zbl 1196.11124, MR 2391279
Reference: [27] Mititica, G., Panaitopol, L.: Series involving the least and the greatest prime factor of a natural number.Math. Inequal. Appl. 13 (2010), 197-201. Zbl 1214.11103, MR 2648241, 10.7153/mia-13-15
Reference: [28] Panaitopol, L.: Several approximations of $\pi(x)$.Math. Inequal. Appl. 2 (1999), 317-324. Zbl 0932.11005, MR 1698377, 10.7153/mia-02-29
Reference: [29] Panaitopol, L.: A formula for $\pi(x)$ applied to a result of Koninck-Ivić.Nieuw Arch. Wiskd. 5 (2000), 55-56. Zbl 0982.11003, MR 1760776
Reference: [30] Panaitopol, L.: Inequalities concerning the function $\pi(x)$: Applications.Acta Arith. 94 (2000), 373-381. Zbl 0963.11050, MR 1779949, 10.4064/aa-94-4-373-381
Reference: [31] Panaitopol, L.: Asymptotic formulas involving $\pi(x)$.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 44 (2001), 91-96. Zbl 1047.11007, MR 2013429
Reference: [32] Panaitopol, L.: Inequalities involving prime numbers.Math. Rep., Bucur 3(53) (2001), 251-256. Zbl 1059.11007, MR 1929536
Reference: [33] Panaitopol, L.: A special case of the Hardy-Littlewood conjecture.Math. Rep., Bucur 4(54) (2002), 265-268. Zbl 1070.11044, MR 2067638
Reference: [34] Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.Monatsberichte Königlichen Preußischen Akademie der Wissenschaften Berlin (1859), 671-680 German. 10.1017/CBO9781139568050.008
Reference: [35] Schmidt, E.: Über die Anzahl der Primzahlen unter gegebener Grenze.Math. Ann. 57 (1903), 195-204 German \99999JFM99999 34.0230.02. MR 1511206, 10.1007/BF01444344
Reference: [36] Schoenfeld, L.: Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$. II.Math. Comput. 30 (1976), 337-360. Zbl 0326.10037, MR 0457374, 10.2307/2005976
Reference: [37] Turán, P.: On the remainder-term of the prime-number formula. II.Acta Math. Acad. Sci. Hung. 1 (1950), 155-166. Zbl 0041.37102, MR 0049219, 10.1007/BF02021308
Reference: [38] Walfisz, A.: Weylsche Exponentialsummen in der neueren Zahlentheorie.Mathematische Forschungsberichte 15. VEB Deutscher Verlag der Wissenschaften, Berlin (1963), German. Zbl 0146.06003, MR 0220685
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo