[2] Akhiezer, N. I.: 
The Classical Moment Problem and Some Related Questions in Analysis. Hafner Publishing, New York (1965). 
MR 0184042 | 
Zbl 0135.33803 
[4] Aronszajn, N., Brown, R. D.: 
Finite-dimensional perturbations of spectral problems and variational approximation methods for eigenvalue problems. I. Finite-dimensional perturbations. Stud. Math. 36 (1970), 1-76. 
DOI 10.4064/sm-36-1-1-76 | 
MR 0271766 | 
Zbl 0203.45202 
[8] Ivanenko, Y., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nilsson, B., Nordebo, S., Toft, J.: 
Passive approximation and optimization using B-splines. SIAM J. Appl. Math. 79 (2019), 436-458. 
DOI 10.1137/17M1161026 | 
MR 3917936 | 
Zbl 1416.41008 
[9] Ivanenko, Y., Nedic, M., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nordebo, S.: 
Quasi- Herglotz functions and convex optimization. Royal Soc. Open Sci. 7 (2020), Article ID 191541, 15 pages. 
DOI 10.1098/rsos.191541 
[10] Kac, I. S., Kreĭn, M. G.: 
$R$-functions -- analytic functions mapping the upper halfplane into itself. Nine Papers in Analysis American Mathematical Society Translations: Series 2, Volume 103. AMS, Providence (1974), 1-18. 
DOI 10.1090/trans2/103 | 
Zbl 0291.34016 
[16] Nedic, M.: 
Characterizations of the Lebesgue measure and product measures related to holomorphic functions having non-negative imaginary or real part. Int. J. Math. 31 (2020), Article ID 2050102, 27 pages. 
DOI 10.1142/S0129167X20501025 | 
MR 4184434 | 
Zbl 1457.32005 
[17] Nevanlinna, R.: Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem. Ann. Acad. Sci. Fenn., Ser. A 18 (1922), 1-53 German \99999JFM99999 48.1226.02.
[19] Vladimirov, V. S.: 
Holomorphic functions with non-negative imaginary part in a tubular region over a cone. Mat. Sb., Nov. Ser. 79 (1969), 128-152 Russian. 
MR 0250066 | 
Zbl 0183.08702