Title:
|
Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ (English) |
Author:
|
Feng, Ya-Fang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
73 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
297-310 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. We also establish an asymptotic formula for $1\leq x, y, z \leq H$ such that $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ are square-free. The method we used in this paper is due to Tolev. (English) |
Keyword:
|
square-free number |
Keyword:
|
Salié sum |
Keyword:
|
Gauss sum |
MSC:
|
11L05 |
MSC:
|
11L40 |
MSC:
|
11N37 |
idZBL:
|
Zbl 07655769 |
idMR:
|
MR4541103 |
DOI:
|
10.21136/CMJ.2022.0154-22 |
. |
Date available:
|
2023-02-03T11:15:56Z |
Last updated:
|
2025-04-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151518 |
. |
Reference:
|
[1] Carlitz, L.: On a problem in additive arithmetic. II.Q. J. Math., Oxf. Ser. 3 (1932), 273-290. Zbl 0006.10401, 10.1093/qmath/os-3.1.273 |
Reference:
|
[2] Dimitrov, S.: On the number of pairs of positive integers $x,y\leq H$ such that $x^2+y^2+1$, $x^2+y^2+2$ are square-free.Acta Arith. 194 (2020), 281-294. Zbl 1469.11263, MR 4096105, 10.4064/aa190118-25-7 |
Reference:
|
[3] Dimitrov, S.: Pairs of square-free values of the type $n^2+1$, $n^2+2$.Czech. Math. J. 71 (2021), 991-1009. Zbl 07442468, MR 4339105, 10.21136/CMJ.2021.0165-20 |
Reference:
|
[4] Estermann, T.: A new application of the Hardy-Littlewood-Kloosterman method.Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. Zbl 0105.03606, MR 0137677, 10.1112/plms/s3-12.1.425 |
Reference:
|
[5] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers.Math. Ann. 266 (1984), 251-259. Zbl 0514.10038, MR 0730168, 10.1007/BF01475576 |
Reference:
|
[6] Louvel, B.: The first moment of Salié sums.Monatsh. Math. 168 (2012), 523-543. Zbl 1314.11050, MR 2993962, 10.1007/s00605-011-0366-5 |
Reference:
|
[7] Reuss, T.: Pairs of $k$-free numbers, consecutive square-full numbers.Available at https://arxiv.org/abs/1212.3150v2 (2012), 28 pages. |
Reference:
|
[8] Tolev, D. I.: On the number of pairs of positive integers $x,y\leq H$ such that $x^2+y^2+1$ is squarefree.Monatsh. Math. 165 (2012), 557-567. Zbl 1297.11118, MR 2891268, 10.1007/s00605-010-0246-4 |
Reference:
|
[9] Zhou, G.-L., Ding, Y.: On the square-free values of the polynomial $x^2+y^2+z^2+k$.J. Number Theory 236 (2022), 308-322. Zbl 07493027, MR 4395352, 10.1016/j.jnt.2021.07.022 |
. |