Previous |  Up |  Next

Article

Summary:
Nobelova cena za fyziku bola v roku 2022 udelená za experimenty s previazanými fotónmi, overenie narušenia Bellových nerovností a priekopnícky prínos v oblasti kvantovej informácie. Výsledky ocenených vedcov Alaina Aspecta, Johna F. Clausera a Antona Zeilingera viedli nielen k lepšiemu pochopeniu neklasického správania sa kvantovej teórie, ale aj k opätovnému záujmu o štúdium základov kvantovej teórie a k rozvoju teórie kvantovej informácie a následne k súčasnému rozmachu v kvantovom počítaní, či kvantovo-asistovanej komunikácii.
References:
[1] Alber, G., Beth, T., Horodecki, M., Horodecki, P., Horodecki, R., Rötteler, M., Weinfurter, H., Werner, R., Zeilinger, A.: Quantum information: An introduction to basic theoretical concepts and experiments. Springer, 2001.
[2] Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398 (1999), 189–190. DOI 10.1038/18296
[3] Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49 (1982), 1804–1807. DOI 10.1103/PhysRevLett.49.1804 | MR 0687359
[4] Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47 (1981) 460–463. DOI 10.1103/PhysRevLett.47.460
[5] Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 49 (1982), 91–94. DOI 10.1103/PhysRevLett.49.91
[6] Bell, J. S.: On the Einstein Podolsky Rosen Paradox. Physics 1 (1964), 195–200. DOI 10.1103/PhysicsPhysiqueFizika.1.195 | MR 3790629
[7] Bennett, C. H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE Press, 1984, 175–179; open-access vydanie pri príležitosti 30. výročia publikovania článku je v Theor. Comput. Sci. 560 (2014), 7–11. MR 3283256
[8] Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70 (1993), 1895–1899. DOI 10.1103/PhysRevLett.70.1895 | MR 1208247
[9] Bohm, D., Aharonov, Y.: Discussion of experimental proof for the Paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108 (1957), 1070–1076. MR 0127766
[10] Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80 (1998), 1121–1125. DOI 10.1103/PhysRevLett.80.1121 | MR 1633274
[11] Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390 (1997), 575–579. DOI 10.1038/37539
[12] Clauser, J. F., Horne, M. A., Shimony, A., Holt, R. A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23 (1969), 880–884. DOI 10.1103/PhysRevLett.23.880
[13] Dieks, D.: Communication by EPR devices. Phys. Lett. A 92 (1982), 271–272. DOI 10.1016/0375-9601(82)90084-6
[14] Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47 (1935), 777–780. DOI 10.1103/PhysRev.47.777
[15] Ekert, A. K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67 (1991), 661–663. DOI 10.1103/PhysRevLett.67.661 | MR 1118810
[16] Freedman, S. J., Clauser, J. F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28 (1972), 938–941. DOI 10.1103/PhysRevLett.28.938
[17] Garg, A., Mermin, N. D.: Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35 (1987), 3831–3835.
[18] Ghirardi, G.: Entanglement, Nonlocality, Superluminal Signaling and Cloning. In: Bracken, P. (Ed.), Advances in Quantum Mechanics, IntechOpen, 2013.
[19] Giustina, M., Versteegh, M. A. M., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J.-A., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M. W., Beyer, J., Gerrits, T., Lita, A. E., Shalm, L. K., Nam, S. W., Scheidl, T., Ursin, R., Wittmann, B., Zeilinger, A.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115 (2015), 250401. DOI 10.1103/PhysRevLett.115.250401
[20] Hensen, B., Bernien, H., Dréau, A. E., Reiserer, A., Kalb, N., Blok, M. S., Ruitenberg, J., Vermeulen, R. F. L., Schouten, R. N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M. W., Markham, M., Twitchen, D. J., Elkouss, D., Wehner, S., Taminiau, T. H., Hanson, R.: Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. Nature 526 (2015), 682–686. DOI 10.1038/nature15759
[21] Herbert, N.: FLASH – A superluminal communicator based upon a new kind of quantum measurement. Found. Phys. 12 (1982), 1171–1179. DOI 10.1007/BF00729622
[22] Kaiser, D.: How the hippies saved physics. W. W. Norton & Company, 2011.
[23] Liao, S.-K., Cai, W.-Q., Liu, W.-Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., Li, F.-Z., Chen, X.-W., Sun, L.-H., Jia, J.-J., Wu, J.-C., Jiang, X.-J., Wang, J.-F., Huang, Y.-M., Wang, Q., Zhou, Y.-L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.-A., Liu, N.-L., Wang, X.-B., Zhu, Z.-C., Lu, C.-Y., Shu, R., Peng, C.-Z., Wang, J.-Y., Pan, J.-W.: Satellite-to-ground quantum key distribution. Nature 549 (2017), 43–47. DOI 10.1038/nature23655 | MR 2414280
[24] Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80 (1998), 3891–3894. DOI 10.1103/PhysRevLett.80.3891 | MR 1623729
[25] Peres, A.: How the no-cloning theorem got its name. Fortschr. Phys. 51 (2003), 458–461. DOI 10.1002/prop.200310062
[26] Ren, J.-G., Hu, P., Yong, H.-L., Zhang, L., Liao, S.-K., Yin, J., Liu, W.-Y., Cai, W.-Q., Yang, M., Li, L., Yang, K.-X., Han, X., Yao, Y.-Q., Li, J., Wu, H.-Y., Wan, S., Liu, L., Liu, D.-Q., Kuang, Y.-W., He, Z.-P., Shang, P., Guo, C., Zheng, R.-H., Tian, K., Zhu, Z.-C., Liu, N.-L., Lu, C.-Y., Shu, R., Chen, Y.-A., Peng, C.-Z., Wang, J.-Y., Pan, J.-W.: Ground-to-satellite quantum teleportation. Nature 549 (2017), 70–73. DOI 10.1038/nature23675 | MR 2348139
[27] Shalm, L. K., Meyer-Scott, E., Christensen, B. G., Bierhorst, P., Wayne, M. A., Stevens, M. J., Gerrits, T., Glancy, S., Hamel, D. R., Allman, M. S., Coakley, K. J., Dyer, S. D., Hodge, C., Lita, A. E., Verma, V. B., Lambrocco, C., Tortorici, E., Migdall, A. L., Xhang, Y., Kumor, D. R., Farr, W. H., Marsili, F., Shaw, M. D., Stern, J. A., Abellán, C., Amaya, W., Pruneri, V., Jennewein, T., Mitchell, M. W., Kwiat, P. G., Bienfang, J. C., Mirin, R. P., Knill, E., Nam, S. W.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115 (2015), 250402.
[28] Shor, P. W.: Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE, 1994, 124–134. MR 1489242
[29] Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3 (2007), 481–486. DOI 10.1038/nphys629
[30] Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s Inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81 (1998), 5039–5043. DOI 10.1103/PhysRevLett.81.5039 | MR 1658032
[31] Wolf, M. M., Perez-Garcia, D., Fernandez, C.: Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory. Phys. Rev. Lett. 103 (2009), 230402. DOI 10.1103/PhysRevLett.103.230402
[32] Wootters, W. K., Zurek, W. H.: A single quantum cannot be cloned. Nature 299 (1982), 802–803. DOI 10.1038/299802a0
Partner of
EuDML logo