[1] Adams, D. O., Olutimo, A. L.: 
Some results on the boundedness of solutions of a certain third order non-autonomous differential equations with delay. Adv. Stud. Contemp. Math., Kyungshang 29 (2019), 237-249. 
Zbl 1438.34234[2] Ademola, A. T., Moyo, S., Ogundare, B. S., Ogundiran, M. O., Adesina, O. A.: 
New conditions on the solutions of a certain third order delay differential equations with multiple deviating arguments. Differ. Uravn. Protsessy Upr. 2019 (2019), 33-69. 
MR 3935484 | 
Zbl 1414.34053[6] Bellman, R., Cooke, K. L.: 
Differential-Difference Equations. Mathematics in Science and Engineering 6. Academic Press, New York (1963). 
MR 0147745 | 
Zbl 0105.06402[15] Dvořáková, S.: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: Doctoral Thesis. Brno University of Technology, Brno (2011).
[16] \`El'sgol'ts, L. \`E.: 
Introduction to the Theory of Differential Equations with Deviating Arguments. McLaughin Holden-Day, San Francisco (1966). 
MR 0192154 | 
Zbl 0133.33502[18] Gabsi, H., Ardjouni, A., Djoudi, A.: 
New technique in asymptotic stability for third-order nonlinear delay differential equations. Math. Eng. Sci. Aerospace 9 (2018), 315-330. 
MR 4088058[23] Hildebrandt, T. H.: 
Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963). 
MR 0154957 | 
Zbl 0112.28302[26] Kolmanovskii, V. B., Nosov, V. R.: 
Stability of Functional Differential Equations. Mathematics in Science and Engineering 180. Academic Press, London (1986). 
MR 0860947 | 
Zbl 0593.34070[27] Krasovskii, N. N.: 
Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford (1963). 
MR 0147744 | 
Zbl 0109.06001[29] Legatos, G. G.: 
Contribution to the qualitative theory of ordinary differential equations. Bull. Soc. Math. Grèce, N. Ser. 2 (1961), 1-44 Greek. 
MR 0140770 | 
Zbl 0107.29202[31] V., J. E. Nápoles: 
A note on the qualitative behaviour of some second order nonlinear differential equations. Divulg. Mat. 10 (2002), 91-99. 
MR 1946903 | 
Zbl 1039.34030[32] Ogundare, B. S., Ademola, A. T., Ogundiran, M. O., Adesina, O. A.: 
On the qualitative behaviour of solutions to certain second order nonlinear differential equation with delay. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63 (2017), 333-351. 
DOI 10.1007/s11565-016-0262-y | 
MR 3712445 | 
Zbl 1387.34096[33] Olehnik, S. N.: 
The boundedness of solutions of a second-order differential equation. Differ. Equations 9 (1973), 1530-1534. 
MR 0333345 | 
Zbl 0313.34031[34] Olutimo, A. L., Adams, D. O.: 
On the stability and boundedness of solutions of certain non-autonomous delay differential equation of third order. Appl. Math. 7 (2016), 457-467. 
DOI 10.4236/am.2016.76041[35] Omeike, M. O.: 
New results on the stability of solution of some non-autonomous delay differential equations of the third order. Differ. Uravn. Protsessy Upr. 2010 (2010), 18-29. 
MR 2766411 | 
Zbl 1476.34152[36] Omeike, M. O., Adeyanju, A. A., Adams, D. O.: 
Stability and boundedness of solutions of certain vector delay differential equations. J. Niger. Math. Soc. 37 (2018), 77-87. 
MR 3853844 | 
Zbl 1474.34504[39] Rao, M. Rama Mohana: 
Ordinary Differential Equations: Theory and Applications. Affiliated East-West Press, New Delhi (1980). 
MR 0587850 | 
Zbl 0482.34001[40] Remili, M., Beldjerd, D.: 
A boundedness and stability results for a kind of third order delay differential equations. Appl. Appl. Math. 10 (2015), 772-782. 
MR 3447611 | 
Zbl 1331.34135[41] Remili, M., Beldjerd, D.: 
Stability and ultimate boundedness of solutions of some third order differential equations with delay. J. Assoc. Arab Universit. Basic Appl. Sci. 23 (2017), 90-95. 
DOI 10.1016/j.jaubas.2016.05.002 | 
MR 3752693[42] Tejumola, H. O.: 
Boundedness criteria for solutions of some second-order differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 50 (1971), 432-437. 
MR 0306619 | 
Zbl 0235.34081[43] Tunç, C.: 
On the stability of solutions for non-autonomous delay differential equations of third-order. Iran. J. Sci. Technol., Trans. A, Sci. 32 (2008), 261-273. 
MR 2683011 | 
Zbl 1364.34107[45] Tunç, C.: 
On the qualitative behaviours of solutions to a kind of nonlinear third order differential equations with retarded argument. Ital. J. Pure Appl. Math. 28 (2011), 273-284. 
MR 2922501 | 
Zbl 1248.34109[46] Tunç, C.: 
Stability and boundedness of solutions of non-autonomous differential equations of second order. J. Comput. Anal. Appl. 13 (2011), 1067-1074. 
MR 2789545 | 
Zbl 1227.34054[49] Tunç, C.: 
Global stability and boundedness of solutions to differential equations of third order with multiple delays. Dyn. Syst. Appl. 24 (2015), 467-478. 
MR 3445827 | 
Zbl 1335.34117[51] Tunç, C.: 
On the properties of solutions for a system of nonlinear differential equations of second order. Int. J. Math. Comput. Sci. 14 (2019), 519-534. 
MR 3923306 | 
Zbl 1417.34122[53] Tunç, C., Tunç, O.: 
On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order. J. Adv. Research 7 (2016), 165-168. 
DOI 10.1016/j.jare.2015.04.005[54] Tunç, C., Tunç, O.: 
A note on the stability and boundedness of solutions to non-linear differential systems of second order. J. Assoc. Arab Universit. Basic Appl. Sci. 24 (2017), 169-175. 
DOI 10.1016/j.jaubas.2016.12.004[55] Tunç, C., Tunç, O.: 
Qualitative analysis for a variable delay system of differential equations of second order. J. Taibah Univ. Sci. 13 (2019), 468-477. 
DOI 10.1080/16583655.2019.1595359[56] Willett, D. W., Wong, J. S. W.: 
The boundedness of solutions of the equation $x^{\prime\prime} +f(x,x^\prime)+ g(x)=0$. SIAM J. Appl. Math. 14 (1966), 1084-1098. 
DOI 10.1137/0114087 | 
MR 0208091 | 
Zbl 0173.34703[60] Yao, H., Wang, J.: 
Globally asymptotic stability of a kind of third-order delay differential system. Int. J. Nonlinear Sci. 10 (2010), 82-87. 
MR 2721073 | 
Zbl 1235.34198[61] Yoshizawa, T.: 
Stability Theory by Lyapunov's Second Method. Publications of the Mathematical Society of Japan 9. Mathematical Society of Japan, Tokyo (1966). 
MR 0208086 | 
Zbl 0144.10802