Title:
|
Fréchet differentiability via partial Fréchet differentiability (English) |
Author:
|
Zajíček, Luděk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
64 |
Issue:
|
2 |
Year:
|
2023 |
Pages:
|
185-207 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X_1, \dots, X_n$ be Banach spaces and $f$ a real function on $X=X_1 \times\dots \times X_n$. Let $A_f$ be the set of all points $x \in X$ at which $f$ is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if $X_1, \dots, X_{n-1}$ are Asplund spaces and $f$ is continuous (respectively Lipschitz) on $X$, then $A_f$ is a first category set (respectively a $\sigma$-upper porous set). We also prove that if $X$, $Y$ are separable Banach spaces and $f\colon X \to Y$ is a Lipschitz mapping, then there exists a $\sigma$-upper porous set $A \subset X$ such that $f$ is Fréchet differentiable at every point $x \in X \setminus A$ at which it is Fréchet differentiable along a closed subspace of finite codimension and Gâteaux differentiable. A number of related more general results are also proved. (English) |
Keyword:
|
Fréchet differentiability |
Keyword:
|
partial Fréchet differentiability |
Keyword:
|
first category set |
Keyword:
|
Asplund space |
Keyword:
|
$\sigma$-porous set |
MSC:
|
46G05 |
MSC:
|
46T20 |
idZBL:
|
Zbl 07790591 |
idMR:
|
MR4658999 |
DOI:
|
10.14712/1213-7243.2023.025 |
. |
Date available:
|
2023-12-13T13:38:14Z |
Last updated:
|
2025-07-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151856 |
. |
Reference:
|
[1] Bessis D. N., Clarke F. H.: Partial subdifferentials, derivates and Rademacher's theorem.Trans. Amer. Math. Soc. 351 (1999), no. 7, 2899–2926. MR 1475676, 10.1090/S0002-9947-99-02203-5 |
Reference:
|
[2] Cúth M.: Separable reduction theorems by the method of elementary submodels.Fund. Math. 219 (2012), no. 3, 191–222. Zbl 1270.46015, MR 3001239, 10.4064/fm219-3-1 |
Reference:
|
[3] Cúth M.: Separable determination in Banach spaces.Fund. Math. 243 (2018), no. 1, 9–27. MR 3835588, 10.4064/fm480-11-2017 |
Reference:
|
[4] Cúth M., Rmoutil M.: $\sigma$-porosity is separably determined.Czechoslovak Math. J. 63(138) (2013), no. 1, 219–234. MR 3035508, 10.1007/s10587-013-0015-3 |
Reference:
|
[5] Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V.: Functional Analysis and Infinite-dimensional Geometry.CMS Books Math./Ouvrages Math. SMC, 8, Springer, New York, 2001. MR 1831176 |
Reference:
|
[6] Gorlenko S. V.: Certain differential properties of real functions.Ukrain. Mat. Zh. 29 (1977), no. 2, 246–249, 286 (Russian); translation in Ukrainian Math. J. 29 (1977), no. 2, 185–187. MR 0480907 |
Reference:
|
[7] Ilmuradov D. D.: On differential properties of real functions.Ukrain. Mat. Zh. 46 (1994), no. 7, 842–848 (Russian); translation in Ukrainian Math. J. 46 (1994), no. 7, 922–928. MR 1426800, 10.1007/BF01056669 |
Reference:
|
[8] Kechris A. S.: Classical Descriptive Set Theory.Grad. Texts in Math., 156, Springer, New York, 1995. Zbl 0819.04002, MR 1321597 |
Reference:
|
[9] Kuratowski K.: Topology. Vol. I.Academic Press, New York, Polish Scientific Publishers, Warsaw, 1966. MR 0217751 |
Reference:
|
[10] Lau K. S., Weil C. E.: Differentiability via directional derivatives.Proc. Amer. Math. Soc. 70 (1978), no. 1, 11–17. MR 0486354, 10.1090/S0002-9939-1978-0486354-7 |
Reference:
|
[11] Lindenstrauss J., Preiss D., Tišer J.: Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces.Ann. of Math. Stud., 179, Princeton University Press, Princeton, 2012. MR 2884141 |
Reference:
|
[12] Mykhaylyuk V., Plichko A.: On a problem of Mazur from "the Scottish Book” concerning second partial derivatives.Colloq. Math. 141 (2015), no. 2, 175–182. MR 3404261, 10.4064/cm141-2-3 |
Reference:
|
[13] Penot J.-P.: Calculus without Derivatives.Grad. Texts in Math., 266, Springer, New York, 2013. MR 2986672, 10.1007/978-1-4614-4538-8 |
Reference:
|
[14] Preiss D., Zajíček L.: Directional derivatives of Lipschitz functions.Israel J. Math. 125 (2001), 1–27. MR 1853802, 10.1007/BF02773371 |
Reference:
|
[15] Saint-Raymond J.: Sur les fonctions munies de dérivées partielles.Bull. Sci. Math. (2) 103 (1979), no. 4, 375–378 (French. English summary). MR 0548914 |
Reference:
|
[16] Stepanoff W.: Sur les conditions de l'existence de la differentielle totale.Mat. Sb. 32 (1925), 511–526 (French). |
Reference:
|
[17] Veselý L., Zajíček L.: On differentiability of convex operators.J. Math. Anal. Appl. 402 (2013), no. 1, 12–22. MR 3023233, 10.1016/j.jmaa.2012.12.073 |
Reference:
|
[18] Zajíček L.: Fréchet differentiability, strict differentiability and subdifferentiability.Czechoslovak Math. J. 41 (1991), no. 3, 471–489. Zbl 0760.46038, MR 1117801, 10.21136/CMJ.1991.102482 |
Reference:
|
[19] Zajíček L.: On $\sigma$-porous sets in abstract spaces.Abstr. Appl. Anal. 2005 (2005), no. 5, 509–534. Zbl 1098.28003, MR 2201041, 10.1155/AAA.2005.509 |
Reference:
|
[20] Zajíček L.: Generic Fréchet differentiability on Asplund spaces via a.e. strict differentiability on many lines.J. Convex Anal. 19 (2012), no. 1, 23–48. MR 2934114 |
Reference:
|
[21] Zajíček L.: Gâteaux and Hadamard differentiability via directional differentiability.J. Convex Anal. 21 (2014), no. 3, 703–713. MR 3243814 |
. |