Previous |  Up |  Next

Article

Keywords:
fuzzy data; resnet; representation learning; fuzzy clustering; convolutional neural networks
Summary:
Most existing distance measures for fuzzy data do not capture differences in the shapes of the left and right tails of membership functions. As a result, they may calculate a distance of zero between fuzzy data even when these differences exist. Additionally, some distance measures cannot compute distances between fuzzy data when their membership functions differ in type. In this paper, inspired by human visual perception, we propose a fuzzy clustering method for fuzzy data using a novel representation technique that is capable of detecting small differences in the shapes of the left and right tails of membership functions. Moreover, it effectively clusters fuzzy data even when their membership functions differ in type. By utilizing the pre-trained ResNet50 network as a feature extractor and applying the FCM clustering method to the output from the last convolutional layer, our approach achieves high accuracy in clustering both synthetic and real data sets. Experimental results demonstrate that our method achieved a Rand Index of 0.9965, outperforming state-of-the-art methods, making it particularly suitable for applications that require high clustering accuracy.
References:
[1] Alguliyev, R. M., Aliguliyev, R. M., Alakbarov, R. G.: Constrained k-means algorithm for resource allocation in mobile cloudlets. Kybernetika 59 (2023), 1, 88-109.
[2] Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Springer, Berlin, Heidelberg 2013. MR 3024762 | Zbl 1271.03001
[3] Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, New York 1981. MR 0631231 | Zbl 0503.68069
[4] Castellano, G., Vessio, G.: A deep learning approach to clustering visual arts. Int. J. Computer Vision 130 (2022), 11, 2590-2605. DOI 
[5] Chen, Y., Zhou, S., Zhang, X., Liu, D., Fu, C.: Improved fuzzy c-means clustering by varying the fuzziness parameter. Pattern Recogn. Lett. 157 (2022), 60-66. DOI 
[6] Coppi, R., D'Urso, P., Giordani, P.: A note on the algorithms for determining the model structureFuzzy and possibilistic clustering for fuzzy data. Comput. Statist. Data Analysis 56 (2012), 4, 915-927. DOI  | MR 2888734
[7] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: Imagenet: A largescale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248-255.
[8] Ding, W., Abdel-Basset, M., Hawash, H., Pedrycz, W.: Multimodal infant brain segmentation by fuzzy-informed deep learning. IEEE Trans. Fuzzy Systems 30 (2021), 4, 1088-1101. DOI 
[9] D'Urso, P., Giovanni, L. De: Robust clustering of imprecise data. Chemometr. Intell. Labor. Systems 136 (2014), 58-80. DOI 
[10] D'Urso, P., Giordani, P.: A weighted fuzzy c-means clustering model for fuzzy data. Comput. Statist. Data Analysis 50 (2006), 6, 1496-1523. DOI  | MR 2222055
[11] D'Urso, P., Leski, J. M.: Fuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averaging. Fuzzy Sets Systems 389 (2020), 1-28. DOI  | MR 4090410
[12] Eskandari, E., Khastan, A.: A robust fuzzy clustering model for fuzzy data based on an adaptive weighted L1 norm. Iranian J. Fuzzy Systems 20 (2023), 6, 1-20. MR 4685521
[13] Eskandari, E., Khastan, A.: Investigating the effect of using different loss functions on the performance of the fuzzy clustering model for fuzzy data in the presence of outlier data. Fuzzy Systems Appl. 7 (2024), 1, 109-123.
[14] Eskandari, E., Khastan, A., Tomasiello, S.: Improved determination of the weights in a clustering approach based on a weighted dissimilarity measure between fuzzy data. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2022, pp. 1-6.
[15] Feng, Q., Chen, L., Chen, C. L. P., Guo, L.: Deep fuzzy clustering - a representation learning approach. IEEE Trans. Fuzzy Systems 28 (2020), 7, 1420-1433. DOI 
[16] Ferraro, M. B., Giordani, P.: Possibilistic and fuzzy clustering methods for robust analysis of non-precise data. Int. J. Approx. Reasoning 88 (2017), 23-38. DOI  | MR 3679135
[17] Figueroa-Garcia, J. C., Varón-Gaviria, C. A., Barbosa-Fontecha, J. L.: Fuzzy random variable generation using $\alpha$-cuts. IEEE Trans. Fuzzy Systems 29 (2019), 3, 539-548. DOI 10.1109/TFUZZ.2019.2956668
[18] Gao, Y., Wang, W., Xie, J., Pan, J.: A new robust fuzzy c-means clustering method based on adaptive elastic distance. Knowledge Based Systems 237 (2022), 107769. DOI 
[19] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, pp. 770-778.
[20] Huang, K., Zhang, Y., Cheng, H. D., Xing, P., Zhang, B.: Semantic segmentation of breast ultrasound image with fuzzy deep learning network and breast anatomy constraints. Neurocomputing 450 (2021), 319-335. DOI 
[21] Hung, W., Yang, M.: Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation. Fuzzy Sets Systems 150 (2005), 3, 561-577. DOI  | MR 2119383
[22] Kartli, N., Bostanci, E., Guzel, M. S.: Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227. DOI  | MR 4794582
[23] Rand, W. M.: Objective criteria for the evaluation of clustering methods. J. American Statist. Assoc. 66 (1971), 336, 846-850. DOI 
[24] Su, L., Cao, X.: Fuzzy autoencoder for multiple change detection in remote sensing images. J. Appl. Remote Sensing 12 (2018), 3, 035014. DOI 
[25] Wei, X., Lu, D., Cao, X., Su, L., Wang, L., Guo, H., Hou, Y., He, X.: A fuzzy artificial neural network-based method for Cerenkov luminescence tomography. AIP Advances 9 (2019), 6, 065105. DOI 10.1063/1.5088234
[26] Yang, M., Ko, C.: On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy Sets Systems 84 (1996), 1, 49-60. DOI  | MR 1419650
Partner of
EuDML logo