[2] Cockburn, B., Shu, C.-W.: 
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework. Math. Comput. 52 (1989), 411-435. 
DOI 10.2307/2008474 | 
MR 0983311 | 
Zbl 0662.65083 
[4] Garavello, M., Piccoli, B.: 
Traffic Flow on Networks. AIMS Series on Applied Mathematics 1. American Institute of Mathematical Sciences, Springfield (2006). 
MR 2328174 | 
Zbl 1136.90012 
[5] Greenshields, B. D.: A study of traffic capacity. Proceedings of the Fourteenth Annual Meeting of the Highway Research Board Held at Washington, D.C. December 6-7, 1934. Part I Highway Research Board, Kansas (1935), 448-477.
[8] Kachroo, P., Sastry, S.: Traffic Flow Theory: Mathematical Framework. University of California Berkeley, Berkeley (2012).
[9] Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation. National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems, Ann Arbor, Michigan, USA, 8 Apr 1973 Los Alamos Scientific Laboratory, Los Alamos (1973), 23 pages.
[13] Vacek, L., Shu, C.-W., Kučera, V.: 
Discontinuous Galerkin method with Godunov-like numerical fluxes for traffic flows on networks. Part II: Maximum principle. (to appear) in Appl. Math., Praha (2025). 
DOI 10.21136/AM.2025.0018-25 | 
MR 4816401 
[14] Wageningen-Kessels, F. van, Lint, H. van, Vuik, K., Hoogendoorn, S.: 
Genealogy of traffic flow models. EURO J. Transport. Log. 4 (2015), 445-473. 
DOI 10.1007/s13676-014-0045-5