Previous |  Up |  Next

Article

Title: On generalized bihyperbolic third-order Jacobsthal polynomials (English)
Author: Cerda-Morales, Gamaliel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 3
Year: 2025
Pages: 393-403
Summary lang: English
.
Category: math
.
Summary: A new generalization of third-order Jacobsthal bihyperbolic polynomials is introduced. Some of the properties of presented polynomials are given. A general Vajda formula for the generalized bihyperbolic third-order Jacobsthal polynomials is obtained. This result implies the Catalan, Cassini and d'Ocagne identities. Moreover, generating function and matrix generators for these polynomials are presented. (English)
Keyword: third-order Jacobsthal number
Keyword: hyperbolic number
Keyword: bihyperbolic number
Keyword: recurrence relation
MSC: 11B37
MSC: 11B39
DOI: 10.21136/MB.2024.0037-24
.
Date available: 2025-09-26T14:31:38Z
Last updated: 2025-09-26
Stable URL: http://hdl.handle.net/10338.dmlcz/153083
.
Reference: [1] Bilgici, G., Daşdemir, A.: Some unrestricted Fibonacci and Lucas hyper-complex numbers.Acta Comment. Univ. Tartu. Math. 24 (2020), 37-48. Zbl 1471.11045, MR 4183381, 10.12697/ACUTM.2020.24.03
Reference: [2] Bilgin, M., Ersoy, S.: Algebraic properties of bihyperbolic numbers.Adv. Appl. Clifford Algebr. 30 (2020), Article ID 13, 17 pages. Zbl 1442.30049, MR 4054825, 10.1007/s00006-019-1036-2
Reference: [3] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers.Frontiers in Mathematics. Birkhäuser, Basel (2008). Zbl 1151.53001, MR 2411620, 10.1007/978-3-7643-8614-6
Reference: [4] Cerda-Morales, G.: Identities for third order Jacobsthal quaternions.Adv. Appl. Clifford Algebr. 27 (2017), 1043-1053. Zbl 1420.11032, MR 3651501, 10.1007/s00006-016-0654-1
Reference: [5] Cerda-Morales, G.: On a generalization of Tribonacci quaternions.Mediterr. J. Math. 14 (2017), Article ID 239, 12 pages. Zbl 1409.11097, MR 3735469, 10.1007/s00009-017-1042-3
Reference: [6] Cerda-Morales, G.: Dual third-order Jacobsthal quaternions.Proyecciones 37 (2018), 731-747. Zbl 1440.11015, MR 3882525, 10.4067/S0716-09172018000400731
Reference: [7] Cerda-Morales, G.: On third-order Jacobsthal polynomials and their properties.Miskolc Math. Notes 22 (2021), 123-132. Zbl 1474.11045, MR 4292632, 10.18514/MMN.2021.3227
Reference: [8] Cockle, J.: On certain functions resembling quaternions, and on a new imaginary in algebra.Phil. Mag. (3) 33 (1848), 435-439. 10.1080/14786444808646139
Reference: [9] Cockle, J.: On a new imaginary in algebra.Phil. Mag. (3) 34 (1849), 37-47. 10.1080/14786444908646169
Reference: [10] Cook, C. K., Bacon, M. R.: Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations.Ann. Math. Inform. 41 (2013), 27-39. Zbl 1274.11028, MR 3072290
Reference: [11] Olariu, S.: Commutative complex numbers in four dimensions.Complex Numbers in $n$ Dimensions North-Holland Mathematics Studies 190. Elsevier, Amsterdam (2002), 51-147. 10.1016/S0304-0208(02)80004-4
Reference: [12] Pogorui, A. A., Rodríguez-Dagnino, R. M., Rodríguez-Said, R. D.: On the set of zeros of bihyperbolic polynomials.Complex Var. Elliptic Equ. 53 (2008), 685-690. Zbl 1158.30300, MR 2431350, 10.1080/17476930801973014
.

Files

Files Size Format View
MathBohem_150-2025-3_6.pdf 202.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo