Previous |  Up |  Next

Article

Title: A new numerical method for solving neuro-cognitive models via Chebyshev deep neural network (CDNN) (English)
Author: Mohammadi, Kimia Mohammadi
Author: Babaei, Maryam
Author: Hajimohammadi, Zeinab
Author: Parand, Kourosh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 4
Year: 2025
Pages: 517-535
Summary lang: English
.
Category: math
.
Summary: One of the fundamental applications of artificial neural networks is solving Partial Differential Equations (PDEs) which has been considered in this paper. We have created an effective method by combining the spectral methods and multi-layer perceptron to solve Generalized Fitzhugh-Nagumo (GFHN) equation. In this method, we have used Chebyshev polynomials as activation functions of the multi-layer perceptron. In order to solve PDEs, independent variables, which are collocation points, have been used as input dataset. Furthermore, the loss function has been constructed from the residual of the equation and its boundary condition. Minimizing the loss function has adjusted the appropriate values for the parameters of the network. Hence, the network has shown an outstanding performance not only on the training dataset but also on the unseen data. Some numerical examples and a comparison between the results of our proposed method and other existing approaches have been provided to show the efficiency and accuracy of the proposed method. For this purpose different cases such as linear, nonlinear and multi dimensional equations are considered. (English)
Keyword: partial differential equation (PDE)
Keyword: generalized Fitzhugh-Nagumo (GFHN)
Keyword: Chebyshev polynomial
Keyword: numerical approach
Keyword: neural network
Keyword: deep learning
MSC: 33C45
MSC: 68t07
MSC: 92B20
DOI: 10.21136/AM.2025.0082-24
.
Date available: 2025-10-03T11:43:47Z
Last updated: 2025-10-06
Stable URL: http://hdl.handle.net/10338.dmlcz/153091
.
Reference: [1] Abbasbandy, S.: Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method.Appl. Math. Modelling 32 (2008), 2706-2714. Zbl 1167.35395, MR 2456314, 10.1016/j.apm.2007.09.019
Reference: [2] Babaei, M., Aghaei, A. A., Kazemi, Z., Jamshidi, M., Ghaderi, R., Parand, K.: Solving a class of Thomas-Fermi equations: A new solution concept based on physics-informed machine learning.Math. Comput. Simul. 225 (2024), 716-730. Zbl 08030564, MR 4761356, 10.1016/j.matcom.2024.06.009
Reference: [3] Babaei, M., Mohammadi, K. M., Hajimohammadi, Z., Parand, K.: JDNN: Jacobi deep neural network for solving telegraph equation.Available at https://arxiv.org/abs/2212.12700 (2022), 17 pages. 10.48550/arXiv.2212.12700
Reference: [4] Bär, M., Gottschalk, N., Eiswirth, M., Ertl, G.: Spiral waves in a surface reaction: Model calculations.J. Chem. Phys. 100 (1994), 1202-1214. 10.1063/1.466650
Reference: [5] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., Siskind, J. M.: Automatic differentiation in machine learning: A survey.J. Mach. Learn. Res. 18 (2017), Article ID 153, 43 pages. Zbl 06982909, MR 3800512
Reference: [6] Bhrawy, A. H.: A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients.Appl. Math. Comput. 222 (2013), 255-264. Zbl 1329.65234, MR 3115866, 10.1016/j.amc.2013.07.056
Reference: [7] Dehghan, M., Heris, J. M., Saadatmandi, A.: Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses.Math. Methods Appl. Sci. 33 (2010), 1384-1398. Zbl 1196.35025, MR 2674780, 10.1002/mma.1329
Reference: [8] Elbarbary, E. M. E., El-Kady, M.: Chebyshev finite difference approximation for the boundary value problems.Appl. Math. Comput. 139 (2003), 513-523. Zbl 1027.65098, MR 1948656, 10.1016/S0096-3003(02)00214-X
Reference: [9] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning.Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016). Zbl 1373.68009, MR 3617773
Reference: [10] Hadian-Rasanan, A. H., Rahmati, D., Gorgin, S., Parand, K.: A single layer fractional orthogonal neural network for solving various types of Lane-Emden equation.New Astronomy 75 (2020), Article D 101307, 14 pages. 10.1016/j.newast.2019.101307
Reference: [11] Hajimohammadi, Z., Baharifard, F., Ghodsi, A., Parand, K.: Fractional Chebyshev deep neural network (FCDNN) for solving differential models.Chaos Solitons Fractals 153 (2021), Article ID 111530, 15 pages. Zbl 1498.35575, MR 4343625, 10.1016/j.chaos.2021.111530
Reference: [12] J. Han, A. Jentzen, W. E: Solving high-dimensional partial differential equations using deep learning.Proc. Natl. Acad. Sci. USA 115 (2018), 8505-8510. Zbl 1416.35137, MR 3847747, 10.1073/pnas.1718942115
Reference: [13] İnan, B.: A finite difference method for solving generalized FitzHugh-Nagumo equation.AIP Conf. Proc. 1926 (2018), Article ID 020018, 8 pages. Zbl 1469.65132, 10.1063/1.5020467
Reference: [14] Jiwari, R., Gupta, R. K., Kumar, V.: Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh-Nagumo equation with time-dependent coefficients.Ain Shams Eng. J. 5 (2014), 1343-1350. 10.1016/j.asej.2014.06.005
Reference: [15] Jones, D. S., Plank, M. J., Sleeman, B. D.: Differential Equations and Mathematical Biology.Chapman & Hall/CRC Mathematical and Computational Biology Series. CRC Press, Boca Raton (2010). Zbl 1298.92003, MR 2573923, 10.4324/9780203009314
Reference: [16] Kawahara, T., Tanaka, M.: Interactions of traveling fronts: An exact solution of a nonlinear diffusion equation.Phys. Lett., A 97 (1983), 311-314. MR 0719496, 10.1016/0375-9601(83)90648-5
Reference: [17] Keener, J., Sneyd, J.: Mathematical Physiology.Interdisciplinary Applied Mathematics 8. Springer, New York (1998). Zbl 0913.92009, MR 1673204, 10.1007/b98841
Reference: [18] Khater, A. H., Temsah, R. S.: Numerical solutions of some nonlinear evolution equations by Chebyshev spectral collocation methods.Int. J. Comput. Math. 84 (2007), 305-316. Zbl 1117.65142, MR 2323728, 10.1080/00207160601138863
Reference: [19] Khoee, A. G., Mohammadi, K. M., Jani, M., Parand, K.: A least squares support vector regression for anisotropic diffusion filtering.Available at https://arxiv.org/abs/2202.00595 (2022), 18 pages. 10.48550/arXiv.2202.00595
Reference: [20] Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization.Available at https://arxiv.org/abs/1412.6980 (2014), 15 pages. 10.48550/arXiv.1412.6980
Reference: [21] Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization.Math. Program., Ser. B 45 (1989), 503-528. Zbl 0696.90048, MR 1038245, 10.1007/BF01589116
Reference: [22] Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network.J. Comput. Phys. 399 (2019), Article ID 108925, 17 pages. Zbl 1454.65131, MR 4013148, 10.1016/j.jcp.2019.108925
Reference: [23] Lu, L., Meng, X., Mao, Z., Karniadakis, G. E.: DeepXDE: A deep learning library for solving differential equations.SIAM Rev. 63 (2021), 208-228. Zbl 1459.65002, MR 4209661, 10.1137/19M1274067
Reference: [24] Mai-Duy, N., Tanner, R. I.: A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems.J. Comput. Appl. Math. 201 (2007), 30-47. Zbl 1110.65112, MR 2293536, 10.1016/j.cam.2006.01.030
Reference: [25] Nucci, M. C., Clarkson, P. A.: The nonclassical method is more general than the direct method for symmetry reductions: An example of the Fitzhugh-Nagumo equation.Phys. Lett., A 164 (1992), 49-56. MR 1162061, 10.1016/0375-9601(92)90904-Z
Reference: [26] Pang, G., Lu, L., Karniadakis, G. E.: fPINNs: Fractional physics-informed neural networks.SIAM J. Sci. Comput. 41 (2019), A2603--A2626. Zbl 1420.35459, MR 3995303, 10.1137/18M1229845
Reference: [27] Parand, K., Moayeri, M. M., Latifi, S., Delkhosh, M.: A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions.Eur. Phys. J. Plus 132 (2017), Article ID 325, 11 pages. 10.1140/epjp/i2017-11600-0
Reference: [28] Parand, K., Razzaghi, M.: Rational Chebyshev tau method for solving Volterra's population model.Appl. Math. Comput. 149 (2004), 893-900. Zbl 1038.65149, MR 2033170, 10.1016/j.amc.2003.09.006
Reference: [29] Raissi, M., Perdikaris, P., Karniadakis, G. E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.J. Comput. Phys. 378 (2019), 686-707. Zbl 1415.68175, MR 3881695, 10.1016/j.jcp.2018.10.045
Reference: [30] Rivlin, T. J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory.Dover, New York (2020). Zbl 1458.41001, MR 4878071
Reference: [31] Shih, M., Momoniat, E., Mahomed, F. M.: Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh-Nagumo equation.J. Math. Phys. 46 (2005), Article ID 023503, 10 pages. Zbl 1076.35052, MR 2121716, 10.1063/1.1839276
Reference: [32] Triki, H., Wazwaz, A.-M.: On soliton solutions for the Fitzhugh-Nagumo equation with time-dependent coefficients.Appl. Math. Modelling 37 (2013), 3821-3828. Zbl 1291.35266, MR 3020534, 10.1016/j.apm.2012.07.031
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo