| Title: | A note on eigenvalue of tensors and its application (English) |
| Author: | Nayak, Snigdhashree |
| Author: | Panigrahy, Krushnachandra |
| Author: | Mishra, Debasisha |
| Author: | Mishra, Nachiketa |
| Language: | English |
| Journal: | Applications of Mathematics |
| ISSN: | 0862-7940 (print) |
| ISSN: | 1572-9109 (online) |
| Volume: | 70 |
| Issue: | 4 |
| Year: | 2025 |
| Pages: | 563-594 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | The tensor eigenvalue problem has been widely studied in recent years. In this paper, several new properties of eigenvalues and determinants of tensors are explored. We also proposed a formula to compute the determinant of a tensor as a mimic of the matrix determinant. The Perron-Frobenius theorem, one of the most important results in non-negative matrix theory, is proposed for the class of non-negative tensors in the Einstein product framework. Further, the power method, a widely used matrix iterative method for finding the largest eigenvalue, is framed for tensors using the Einstein product. The proposed higher-order power method is applied to calculate the largest eigenvalue of the Laplacian tensors associated with hyper-stars and hyper-trees. The numerical results show that the higher-order power method with the Einstein product is stable. (English) |
| Keyword: | eigenvalue |
| Keyword: | eigentensor |
| Keyword: | determinant |
| Keyword: | Einstein product |
| Keyword: | power method |
| MSC: | 15A18 |
| MSC: | 15A69 |
| DOI: | 10.21136/AM.2025.0022-25 |
| . | |
| Date available: | 2025-10-03T12:42:03Z |
| Last updated: | 2025-10-06 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153093 |
| . | |
| Reference: | [1] Bachmann, P.: Zahlentheorie. Band 2. Die analytische Zahlentheorie.Teubner, Leipzig (1894), German \99999JFM99999 25.0249.02. |
| Reference: | [2] Bader, B. W., Kolda, T. G.: Tensor Toolbox for Matlab. Version 2.5.Available at {\def{ }\let \relax\brokenlink{https://}{gitlab.com/tensors/tensor_toolbox}} (2012). |
| Reference: | [3] Bomze, I. M., Ling, C., Qi, L., Zhang, X.: Standard bi-quadratic optimization problems and unconstrained polynomial reformulations.J. Glob. Optim. 52 (2012), 663-687. Zbl 1268.90085, MR 2897452, 10.1007/s10898-011-9710-5 |
| Reference: | [4] Brazell, M., Li, N., Navasca, C., Tamon, C.: Solving multilinear systems via tensor inversion.SIAM J. Matrix Anal. Appl. 34 (2013), 542-570. Zbl 1273.15028, MR 3054591, 10.1137/100804577 |
| Reference: | [5] Brouwer, L. E. J.: Über eindeutige, stetige Transformationen von Flächen in sich.Math. Ann. 69 (1910), 176-180 German \99999JFM99999 41.0544.01. MR 1511582, 10.1007/BF01456868 |
| Reference: | [6] Cartwright, D., Sturmfels, B.: The number of eigenvalues of a tensor.Linear Algebra Appl. 438 (2013), 942-952. Zbl 1277.15007, MR 2996375, 10.1016/j.laa.2011.05.040 |
| Reference: | [7] Chang, K. C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors.J. Math. Anal. Appl. 350 (2009), 416-422. Zbl 1157.15006, MR 2476927, 10.1016/j.jmaa.2008.09.067 |
| Reference: | [8] Chang, S. Y., Wu, H.-C.: Tensor Wiener filter.IEEE Trans. Signal Process. 70 (2022), 410-422. Zbl 1548.94111, MR 4372354, 10.1109/TSP.2022.3140722 |
| Reference: | [9] Chen, C., Surana, A., Bloch, A. M., Rajapakse, I.: Multilinear control systems theory.SIAM J. Control Optim. 59 (2021), 749-776. Zbl 1460.93014, MR 4220654, 10.1137/19M1262589 |
| Reference: | [10] Chen, H., Ahmad, F., Vorobyov, S., Porikli, F.: Tensor decompositions in wireless communications and MIMO radar.IEEE J. Sel. Topics Signal Process. 15 (2021), 438-453. 10.1109/JSTSP.2021.3061937 |
| Reference: | [11] Chen, Y., Hu, Z., Hu, J., Shu, L.: Block structure-based covariance tensor decomposition for group identification in matrix variables.Stat. Probab. Lett. 216 (2025), Article ID 110251, 9 pages. Zbl 07955915, MR 4791406, 10.1016/j.spl.2024.110251 |
| Reference: | [12] Cox, D., Little, J., O'Shea, D.: Using Algebraic Geometry.Graduate Texts in Mathematics 185. Springer, New York (1998). Zbl 0920.13026, MR 1639811, 10.1007/978-1-4757-6911-1 |
| Reference: | [13] Cui, L.-B., Chen, C., Li, W., Ng, M. K.: An eigenvalue problem for even order tensors with its applications.Linear Multilinear Algebra 64 (2016), 602-621. Zbl 1362.15005, MR 3479021, 10.1080/03081087.2015.1071311 |
| Reference: | [14] Cui, L.-B., Li, M.-H., Song, Y.: Preconditioned tensor splitting iterations method for solving multi-linear systems.Appl. Math. Lett. 96 (2019), 89-94. Zbl 1503.65066, MR 3948863, 10.1016/j.aml.2019.04.019 |
| Reference: | [15] Lathauwer, L. De, Moor, B. De: From matrix to tensor: Multilinear algebra and signal processing.Mathematics in Signal Processing IV Clarendon Press, Oxford (1998), 1-15. |
| Reference: | [16] Ding, W., Wei, Y.: Generalized tensor eigenvalue problems.SIAM J. Matrix Anal. Appl. 36 (2015), 1073-1099. Zbl 1321.15018, MR 3376129, 10.1137/140975656 |
| Reference: | [17] Einstein, A.: The foundation of the general theory of relativity.The Collected Papers of Albert Einstein. Volume 6. The Berlin Years: Writings, 1914-1917 Princeton University Press, Princeton (2007), 146-200. Zbl 0979.01031, MR 1492181 |
| Reference: | [18] Guide, M. El, Ichi, A. El, Jbilou, K., Beik, F. P. A.: Tensor Krylov subspace methods via the Einstein product with applications to image and video processing.Appl. Numer. Math. 181 (2022), 347-363. Zbl 1497.65083, MR 4446090, 10.1016/j.apnum.2022.06.010 |
| Reference: | [19] Gantmacher, F. R.: Applications of the Theory of Matrices.Interscience Publishers, New York (1959). Zbl 0085.01001, MR 107648 |
| Reference: | [20] Gelfand, I. M., Kapranov, M. M., Zelevinsky, A. V.: Discriminants, Resultants, and Multidimensional Determinants.Birkhäuser, Boston (1994). Zbl 0827.14036, MR 1264417, 10.1007/978-0-8176-4771-1 |
| Reference: | [21] Gu, J., Wei, Y.: Even order uniform hypergraph via the Einstein product.AKCE Int. J. Graphs Comb. 20 (2023), 159-167. Zbl 1526.05107, MR 4637187, 10.1080/09728600.2023.2236165 |
| Reference: | [22] Hajarian, M.: Conjugate gradient-like methods for solving general tensor equation with Einstein product.J. Franklin Inst. 357 (2020), 4272-4285. Zbl 1440.65050, MR 4093762, 10.1016/j.jfranklin.2020.01.010 |
| Reference: | [23] Hao, N., Kilmer, M. E., Braman, K., Hoover, R. C.: Facial recognition using tensor-tensor decompositions.SIAM J. Imaging Sci. 6 (2013), 437-463. Zbl 1305.15061, MR 3032961, 10.1137/110842570 |
| Reference: | [24] He, Z.-H., Wang, X.-X., Zhao, Y.-F.: Eigenvalues of quaternion tensors with applications to color video processing.J. Sci. Comput. 94 (2023), Article ID 1, 15 pages. Zbl 1504.15023, MR 4514152, 10.1007/s10915-022-02058-5 |
| Reference: | [25] Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors.J. Symb. Comput. 50 (2013), 508-531. Zbl 1259.15038, MR 2996894, 10.1016/j.jsc.2012.10.001 |
| Reference: | [26] Hu, S., Qi, L., Xie, J.: The largest Laplacian and signless Laplacian $H$-eigenvalues of a uniform hypergraph.Linear Algebra Appl. 469 (2015), 1-27. Zbl 1305.05129, MR 3299053, 10.1016/j.laa.2014.11.020 |
| Reference: | [27] Hu, W., Yang, Y., Zhang, W., Xie, Y.: Moving object detection using tensor-based low-rank and saliently fused-sparse decomposition.IEEE Trans. Image Process. 26 (2017), 724-737. Zbl 1409.94251, MR 3596376, 10.1109/TIP.2016.2627803 |
| Reference: | [28] Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics.Comput. Methods Appl. Mech. Eng. 189 (2000), 419-438. Zbl 0980.74006, MR 1781866, 10.1016/S0045-7825(99)00472-7 |
| Reference: | [29] Jiang, Z., Li, J.: Solving tensor absolute value equation.Appl. Numer. Math. 170 (2021), 255-268. Zbl 07398305, MR 4300345, 10.1016/j.apnum.2021.07.020 |
| Reference: | [30] Knowles, J. K.: On the representation of the elasticity tensor for isotropic materials.J. Elasticity 39 (1995), 175-180. Zbl 0852.73020, MR 1343155, 10.1007/BF00043415 |
| Reference: | [31] Kolda, T. G., Bader, B. W.: Tensor decompositions and applications.SIAM Rev. 51 (2009), 455-500. Zbl 1173.65029, MR 2535056, 10.1137/07070111X |
| Reference: | [32] Kolda, T. G., Mayo, J. R.: Shifted power method for computing tensor eigenpairs.SIAM J. Matrix Anal. Appl. 32 (2011), 1095-1124. Zbl 1247.65048, MR 2854605, 10.1137/100801482 |
| Reference: | [33] Li, A.-M., Qi, L., Zhang, B.: E-characteristic polynomials of tensors.Commun. Math. Sci. 11 (2013), 33-53. Zbl 1282.15023, MR 2975365, 10.4310/CMS.2013.v11.n1.a2 |
| Reference: | [34] Liang, M., Zheng, B.: Further results on Moore-Penrose inverses of tensors with application to tensor nearness problems.Comput. Math. Appl. 77 (2019), 1282-1293. Zbl 1442.15004, MR 3913666, 10.1016/j.camwa.2018.11.001 |
| Reference: | [35] Liang, M., Zheng, B., Zhao, R.: Tensor inversion and its application to the tensor equations with Einstein product.Linear Multilinear Algebra 67 (2019), 843-870. Zbl 1411.15017, MR 3914335, 10.1080/03081087.2018.1500993 |
| Reference: | [36] Lim, L. H.: Singular values and eigenvalues of tensors: A variational approach.Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05) IEEE, Piscataway (2005), 129-132. |
| Reference: | [37] Lin, Z., Lv, T., Zhang, J. A., Liu, R. P.: Tensor-based high-accuracy position estimation for 5G mmWave massive MIMO systems.IEEE International Conference on Communications (ICC) IEEE, Piscataway (2020), 1-6. 10.1109/ICC40277.2020.9149001 |
| Reference: | [38] Miao, Y., Wei, Y., Chen, Z.: Fourth-order tensor Riccati equations with the Einstein product.Linear Multilinear Algebra 70 (2022), 1831-1853. Zbl 1492.15011, MR 4444581, 10.1080/03081087.2020.1777248 |
| Reference: | [39] Mo, C., Wang, X., Wei, Y.: Time-varying generalized tensor eigenanalysis via Zhang neural networks.Neurocomputing 407 (2020), 465-479. 10.1016/j.neucom.2020.04.115 |
| Reference: | [40] Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor.SIAM J. Matrix Anal. Appl. 31 (2009), 1090-1099. Zbl 1197.65036, MR 2538668, 10.1137/09074838X |
| Reference: | [41] Pandey, D., Leib, H.: Tensor multi-linear MMSE estimation using the Einstein product.Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC). Volume 1 Advances in Intelligent Systems and Computing 1363. Springer, Cham (2021), 47-64. 10.1007/978-3-030-73100-7_4 |
| Reference: | [42] Panigrahy, K., Mishra, D.: On reverse-order law of tensors and its application to additive results on Moore-Penrose inverse.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 184, 21 pages. Zbl 1448.15033, MR 4134541, 10.1007/s13398-020-00916-1 |
| Reference: | [43] Qi, L.: Eigenvalues of a real supersymmetric tensor.J. Symb. Comput. 40 (2005), 1302-1324. Zbl 1125.15014, MR 2178089, 10.1016/j.jsc.2005.05.007 |
| Reference: | [44] Qi, L.: Eigenvalues and invariants of tensors.J. Math. Anal. Appl. 325 (2007), 1363-1377. Zbl 1113.15020, MR 2270090, 10.1016/j.jmaa.2006.02.071 |
| Reference: | [45] Qi, L.: $H^{+}$-eigenvalues of Laplacian and signless Laplacian tensors.Commun. Math. Sci. 12 (2014), 1045-1064. Zbl 1305.05134, MR 3194370, 10.4310/CMS.2014.v12.n6.a3 |
| Reference: | [46] Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications.Advances in Mechanics and Mathematics 39. Springer, Singapore (2018). Zbl 1398.15001, MR 3791481, 10.1007/978-981-10-8058-6 |
| Reference: | [47] Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors.Other Titles in Applied Mathematics 151. SIAM, Philadelphia (2017). Zbl 1370.15001, MR 3660696, 10.1137/1.9781611974751 |
| Reference: | [48] Rout, N. C., Panigrahy, K., Mishra, D.: A note on numerical ranges of tensors.Linear Multilinear Algebra 71 (2023), 2645-2669. Zbl 1527.15024, MR 4661576, 10.1080/03081087.2022.2117771 |
| Reference: | [49] Shen, S., Berger, T.: On the distribution formula of the eigenvalue of the Toeplitz tensor and its application.Appl. Math., J. Chin. Univ. 2 (1987), 151-163 Chinese. Zbl 0758.60040 |
| Reference: | [50] Tarantola, A.: Elements for Physics: Quantities, Qualities, and Intrinsic Theories.Springer, Cham (2006). 10.1007/978-3-540-31107-2 |
| Reference: | [51] Wang, Y., Wei, Y.: Generalized eigenvalue for even order tensors via Einstein product and its applications in multilinear control systems.Comput. Appl. Math. 41 (2022), Article ID 419, 30 pages. Zbl 1513.15022, MR 4516460, 10.1007/s40314-022-02129-1 |
| Reference: | [52] Yang, J.-H., Zhao, X.-L., Ma, T.-H., Chen, Y., Huang, T.-Z., Ding, M.: Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization.J. Comput. Appl. Math. 363 (2020), 124-144. Zbl 1429.94027, MR 3961163, 10.1016/j.cam.2019.06.004 |
| Reference: | [53] Yang, J.-H., Zhao, X.-L., Mei, J.-J., Wang, S., Ma, T.-H., Huang, T.-Z.: Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise.Comput. Math. Appl. 77 (2019), 1255-1272. Zbl 1442.94015, MR 3913664, 10.1016/j.camwa.2018.11.003 |
| . |
Fulltext not available (moving wall 24 months)