Previous |  Up |  Next

Article

Title: Two-grid penalty Arrow-Hurwicz iterative finite element methods for the stationary magnetohydrodynamics flow (English)
Author: Yang, Yun-Bo
Author: Xia, Yan-De
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 5
Year: 2025
Pages: 611-646
Summary lang: English
.
Category: math
.
Summary: We propose and analyze three kinds of two-grid penalty Arrow-Hurwicz (A-H) iterative finite element methods for the stationary incompressible magnetohydrodynamic (MHD) equations, which adopt the existing A-H iterative method to obtain the coarse mesh solution, and then correct the solution by three different one-step schemes (Oseen type, Stokes type and Newton type) with the usual penalty method on the fine mesh. These methods combine the A-H iterative method, the penalty method and the two-grid strategy, maintaining the advantage of three methods and overcoming some of their limitations. Rigorous analysis of the optimal error estimate and stability for three methods are provided. Ample numerical experiments are reported to validate the theoretical results and the efficiency of the numerical schemes. (English)
Keyword: magnetohydrodynamic equation
Keyword: two-grid method
Keyword: penalty method
Keyword: Arrow-Hurwicz method
Keyword: stability
Keyword: error estimation
MSC: 65N12
MSC: 65N15
MSC: 65N30
MSC: 76W05
DOI: 10.21136/AM.2025.0141-23
.
Date available: 2025-11-07T16:09:01Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153152
.
Reference: [1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140. Academic Press, New York (2003). Zbl 1098.46001, MR 2424078
Reference: [2] An, R., Shi, F.: Two-level iteration penalty methods for the incompressible flows.Appl. Math. Modelling 39 (2015), 630-641. Zbl 1432.76151, MR 3282600, 10.1016/j.apm.2014.06.014
Reference: [3] Arrow, K. J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-Linear Programming.Stanford Mathematical Studies in the Social Sciences 2. Standford University Press, Standford (1958). Zbl 0091.16002, MR 108399
Reference: [4] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15. Springer, New York (1994). Zbl 0804.65101, MR 1278258, 10.1007/978-1-4757-4338-8
Reference: [5] Chen, P., Huang, J.: On the geometric convergence of the Arrow-Hurwicz algorithm for steady incompressible Navier-Stokes equations.J. Comput. Anal. Appl. 18 (2015), 628-635. Zbl 1333.35157, MR 3308485
Reference: [6] Chen, P., Huang, J., Sheng, H.: Solving steady incompressible Navier-Stokes equations by the Arrow-Hurwicz method.J. Comput. Appl. Math. 311 (2017), 100-114. Zbl 1382.76161, MR 3552689, 10.1016/j.cam.2016.07.010
Reference: [7] Cheng, X.-L., Shaikh, A. W.: Analysis of the iterative penalty method for the Stokes equations.Appl. Math. Lett. 19 (2006), 1024-1028. Zbl 1128.76032, MR 2246170, 10.1016/j.aml.2005.10.021
Reference: [8] Codina, R.: An iterative penalty method for the finite element solution of the stationary Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 110 (1993), 237-262. Zbl 0844.76049, MR 1256320, 10.1016/0045-7825(93)90163-R
Reference: [9] Dai, X.: Finite element approximation of the pure Neumann problem using the iterative penalty method.Appl. Math. Comput. 186 (2007), 1367-1373. Zbl 1117.65153, MR 2316756, 10.1016/j.amc.2006.07.148
Reference: [10] Degond, P., Ferreira, M. A., Motsch, S.: Damped Arrow-Hurwicz algorithm for sphere packing.J. Comput. Phys. 332 (2017), 47-65. Zbl 1378.65121, MR 3591170, 10.1016/j.jcp.2016.11.047
Reference: [11] Deng, J., Tao, Z., Zhang, T.: Iterative penalty finite element methods for the steady incompressible magnetohydrodynamic problem.Comput. Appl. Math. 36 (2017), 1637-1657. Zbl 1381.76161, MR 3714615, 10.1007/s40314-016-0323-y
Reference: [12] Dong, X., He, Y.: Two-level Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics.J. Sci. Comput. 63 (2015), 426-451. Zbl 06456931, MR 3328191, 10.1007/s10915-014-9900-7
Reference: [13] Dong, X., He, Y.: Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics.Sci. China, Math. 59 (2016), 589-608. Zbl 1338.35328, MR 3457057, 10.1007/s11425-015-5087-0
Reference: [14] Dong, X., He, Y.: The Oseen type finite element iterative method for the stationary incompressible magnetohydrodynamics.Adv. Appl. Math. Mech. 9 (2017), 775-794. Zbl 1488.35418, MR 3609990, 10.4208/aamm.2015.m934
Reference: [15] Dong, X., He, Y., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics.Comput. Methods Appl. Mech. Eng. 276 (2014), 287-311. Zbl 1423.76226, MR 3212336, 10.1016/j.cma.2014.03.022
Reference: [16] Du, B., Huang, J.: The generalized Arrow-Hurwicz method with applications to fluid computation.Commun. Comput. Phys. 25 (2019), 752-780. Zbl 1473.76037, MR 3878521, 10.4208/cicp.OA-2017-0235
Reference: [17] Du, B., Huang, J., Mahbub, M. A. Al, Zheng, H.: Two-level methods based on the Arrow-Hurwicz iteration for the steady incompressible magnetohydrodynamic system.Numer. Methods Partial Differ. Equations 39 (2023), 3332-3355. Zbl 1535.65277, MR 4596563, 10.1002/num.23010
Reference: [18] Du, B., Huang, J., Zheng, H.: Two-grid Arrow-Hurwicz methods for the steady incompressible Navier-Stokes equations.J. Sci. Comput. 89 (2021), Article ID 24, 24 pages. Zbl 1493.65195, MR 4309805, 10.1007/s10915-021-01627-4
Reference: [19] Gerbeau, J.-F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations.Numer. Math. 87 (2000), 83-111. Zbl 0988.76050, MR 1800155, 10.1007/s002110000193
Reference: [20] Gerbeau, J.-F., Bris, C. Le, Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006). Zbl 1107.76001, MR 2289481, 10.1093/acprof:oso/9780198566656.001.0001
Reference: [21] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms.Springer Series in Computational Mathematics 5. Springer, Berlin (1986). Zbl 0585.65077, MR 851383, 10.1007/978-3-642-61623-5
Reference: [22] Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics.Comput. Methods Appl. Mech. Eng. 199 (2010), 2840-2855. Zbl 1231.76146, MR 2740762, 10.1016/j.cma.2010.05.007
Reference: [23] Gunzburger, M. D., Meir, A. J., Peterson, J. S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics.Math. Comput. 56 (1991), 523-563. Zbl 0731.76094, MR 1066834, 10.1090/S0025-5718-1991-1066834-0
Reference: [24] Hasler, U., Schneebeli, A., Schötzau, D.: Mixed finite element approximation of incompressible MHD problems based on weighted regularization.Appl. Numer. Math. 51 (2004), 19-45. Zbl 1126.76341, MR 2083323, 10.1016/j.apnum.2004.02.005
Reference: [25] He, Y.: Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations.Math. Comput. 74 (2005), 1201-1216. Zbl 1065.35025, MR 2136999, 10.1090/S0025-5718-05-01751-5
Reference: [26] He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations.IMA J. Numer. Anal. 35 (2015), 767-801. Zbl 1312.76061, MR 3335224, 10.1093/imanum/dru015
Reference: [27] He, Y., Li, J., Yang, X.: Two-level penalized finite element methods for the stationary Navier-Stoke equations.Int. J. Inf. Syst. Sci. 2 (2006), 131-143. Zbl 1099.65110, MR 2220510
Reference: [28] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013
Reference: [29] Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics.J. Sci. Comput. 40 (2009), 281-314. Zbl 1203.76083, MR 2511736, 10.1007/s10915-008-9265-x
Reference: [30] Huang, P.: Iterative methods in penalty finite element discretizations for the steady Navier-Stokes equations.Numer. Methods Partial Differ. Equations 30 (2014), 74-94. Zbl 1299.76042, MR 3149401, 10.1002/num.21795
Reference: [31] Huang, P., Feng, X., He, Y.: Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier-Stokes equations.Appl. Math. Modelling 37 (2013), 728-741. Zbl 1351.76060, MR 3002184, 10.1016/j.apm.2012.02.051
Reference: [32] Keram, A., Huang, P.: The Arrow-Hurwicz iterative finite element method for the stationary thermally coupled incompressible magnetohydrodynamics flow.J. Sci. Comput. 92 (2022), Article ID 11, 25 pages. Zbl 1492.65315, MR 4434142, 10.1007/s10915-022-01867-y
Reference: [33] Layton, W.: A two-level discretization method for the Navier-Stokes equations.Comput. Math. Appl. 26 (1993), 33-38. Zbl 0773.76042, MR 1220955, 10.1016/0898-1221(93)90318-P
Reference: [34] Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier-Stokes equations.SIAM J. Numer. Anal. 35 (1998), 2035-2054. Zbl 0913.76050, MR 1639994, 10.1137/S003614299630230X
Reference: [35] Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements.SIAM J. Numer. Anal. 32 (1995), 1170-1184. Zbl 0853.65092, MR 1342288, 10.1137/0732054
Reference: [36] Moreau, R.: Magnetohydrodynamics.Fluid Mechanics and Its Applications 3. Kluwer Academic Publishers, Boston (1990). Zbl 0714.76003, MR 1144019, 10.1007/978-94-015-7883-7
Reference: [37] Nesliturk, A. I., Aydın, S. H., Tezer-Sezgin, M.: Two-level finite element method with a stabilizing subgrid for the incompressible Navier-Stokes equations.Int. J. Numer. Methods Fluids 58 (2008), 551-572. Zbl 1145.76032, MR 2458542, 10.1002/fld.1753
Reference: [38] Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system.ESAIM, Math. Model. Numer. Anal. 42 (2008), 1065-1087. Zbl 1149.76029, MR 2473320, 10.1051/m2an:2008034
Reference: [39] Schmidt, P. G.: A Galerkin method for time-dependent MHD flow with nonideal boundaries.Commun. Appl. Anal. 3 (1999), 383-398. Zbl 0931.76099, MR 1696344
Reference: [40] Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics.Numer. Math. 96 (2004), 771-800. Zbl 1098.76043, MR 2036365, 10.1007/s00211-003-0487-4
Reference: [41] Shen, J.: On error estimates of the penalty method for unsteady Navier-Stokes equations.SIAM J. Numer. Anal. 32 (1995), 386-403. Zbl 0822.35008, MR 1324294, 10.1137/0732016
Reference: [42] Su, H., Mao, S., Feng, X.: Optimal error estimates of penalty based iterative methods for steady incompressible magnetohydrodynamics equations with different viscosities.J. Sci. Comput. 79 (2019), 1078-1110. Zbl 1419.65123, MR 3969002, 10.1007/s10915-018-0883-7
Reference: [43] Tang, Q., Huang, Y.: Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow.J. Sci. Comput. 70 (2017), 149-174. Zbl 1434.76073, MR 3592137, 10.1007/s10915-016-0246-1
Reference: [44] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis.Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam (1984). Zbl 0568.35002, MR 0769654
Reference: [45] Wang, L., Li, J., Huang, P.: An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method.Int. Commun. Heat Mass Transfer 98 (2018), 183-190. 10.1016/j.icheatmasstransfer.2018.02.019
Reference: [46] Xu, J.: A novel two-grid method for semilinear elliptic equations.SIAM J. Sci. Comput. 15 (1994), 231-237. Zbl 0795.65077, MR 1257166, 10.1137/0915016
Reference: [47] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs.SIAM J. Numer. Anal. 33 (1996), 1759-1777. Zbl 0860.65119, MR 1411848, 10.1137/S003614299223294
Reference: [48] Yang, Y.-B., Jiang, Y.-L.: Error correction iterative method for the stationary incompressible MHD flow.Math. Methods Appl. Sci. 43 (2020), 750-768. Zbl 1444.65068, MR 4056462, 10.1002/mma.5958
Reference: [49] Yang, Y.-B., Jiang, Y.-L., Kong, Q.-X.: The Arrow-Hurwicz iterative finite element method for the stationary magnetohydrodynamics flow.Appl. Math. Comput. 356 (2019), 347-361. Zbl 1428.76108, MR 3934539, 10.1016/j.amc.2018.10.050
Reference: [50] Yang, Y., Jiang, Y., Kong, Q.: Two-grid stabilized FEMs based on Newton type linearization for the steady-state natural convection problem.Adv. Appl. Math. Mech. 12 (2020), 407-435. Zbl 1488.65666, MR 4057193, 10.4208/aamm.OA-2018-0156
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo