Previous |  Up |  Next

Article

Title: Analysis and optimal control of a fractional tuberculosis model (English)
Author: Dicko, Hamadoum
Author: Traoré, Ali
Author: Ouedraogo, Rosaire
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 5
Year: 2025
Pages: 671-694
Summary lang: English
.
Category: math
.
Summary: A fractional model is developed to study the transmission dynamics of tuberculosis disease. The use of a fractional model provides a memory effect and long-term dynamics often observed in chronic infectious diseases such as tuberculosis, which is characterized by a prolonged incubation period and risks of reactivation. The basic reproduction number is computed and we derive the qualitative stability analysis of equilibria. A sensitivity analysis is conducted to assess the impact of the model parameters. Three control strategies are applied, namely treatment, vaccination, and infection rate management, to minimize the number of infected individuals. Numerical simulations are carried out to illustrate the theoretical results obtained. (English)
Keyword: fractional order
Keyword: optimal control
Keyword: tuberculosis
Keyword: sensitivity analysis
MSC: 34A08
MSC: 34D23
MSC: 34H05
MSC: 92B05
DOI: 10.21136/AM.2025.0075-25
.
Date available: 2025-11-07T17:55:27Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153154
.
Reference: [1] Aparicio, J. P., Castillo-Chávez, C.: Mathematical modelling of tuberculosis epidemics.Math. Biosci. Eng. 6 (2009), 209-237. Zbl 1167.92019, MR 2532014, 10.3934/mbe.2009.6.209
Reference: [2] Apelblat, A.: Differentiation of the Mittag-Leffler functions with respect to parameters in the Laplace transform approach.Mathematics 8 (2020), Article ID 657, 22 pages. 10.3390/math8050657
Reference: [3] Balzotti, C., D'Ovidio, M., Lai, A. C., Loreti, P.: Effects of fractional derivatives in epidemic models.Available at https://arxiv.org/abs/2107.02877 (2021), 18 pages. 10.48550/arXiv.2107.02877
Reference: [4] Bhatter, S., Kumawat, S., Purohit, S. D., Suthar, D. L.: Mathematical modeling of tuberculosis using Caputo fractional derivative: A comparative analysis with real data.Sci. Rep. 15 (2025), Article ID 12672, 19 pages. 10.1038/s41598-025-97502-5
Reference: [5] Chasnov, J. R.: Introduction to Differential Equations.The Hong Kong University of Science and Technology, Hong Kong (2009), Available at {\def\let \relax \brokenlink{https://www.ms.uky.}{edu/ ejwh226/Spring2018/Chasnov.pdf}}\kern0pt.
Reference: [6] Vlas, S. J. de, Verver, S., Cai, R., Vanhommerig, J. W., Hontelez, J., Coffeng, L., Noordegraaf-Schouten, M. V., Richardus, J. H.: Mathematical Modelling of Programmatic Screening Strategies for Latent Tuberculosis Infection in Countries with Low Tuberculosis Incidence: ECDC Technical Report.European Centre for Disease Prevention and Control, Stockholm (2018), Available at {\def{ }\let \relax \brokenlink{https://www.ecdc.europa.eu/sites/default/}{files/documents/LTBI-math-models_Feb2018-edited.pdf}}\kern0pt.
Reference: [7] Dicko, H., Traoré, A.: Analysis of tuberculosis model with the impact of hospital resources.J. Appl. Math. Comput. 71 (2025), 3305-3328. Zbl 08080546, MR 4910852, 10.1007/s12190-024-02356-1
Reference: [8] Fleming, W. H., Rishel, R. W.: Deterministic and Stochastic Optimal Control.Applications of Mathematics 1. Springer, Berlin (1975). Zbl 0323.49001, MR 0454768, 10.1007/978-1-4612-6380-7
Reference: [9] Hamdan, N., Kilicman, A.: A fractional order SIR epidemic model for dengue transmission.Chaos Solitons Fractals 114 (2018), 55-62. Zbl 1415.92179, MR 3856626, 10.1016/j.chaos.2018.06.031
Reference: [10] Khan, A., Shah, K., Abdeljawad, T., Amacha, I.: Fractal fractional model for tuberculosis: Existence and numerical solutions.Sci. Rep. 14 (2024), Article ID 12211, 19 pages. 10.1038/s41598-024-62386-4
Reference: [11] Kilbas, A. A., Rivero, M., Trujillo, J. J.: Existence and uniqueness theorems for differential equations of fractional order in weighted spaces of continuous functions.Fract. Calc. Appl. Anal. 6 (2003), 363-399. Zbl 1085.34002, MR 2044306
Reference: [12] Kilbas, A. A., Trujillo, J. J.: Differential equations of fractional order: Methods, results and problems. I.Appl. Anal. 78 (2001), 153-192. Zbl 1031.34002, MR 1887959, 10.1080/00036810108840931
Reference: [13] Li, Y., Liu, X., Yuan, Y., Li, J., Wang, L.: Global analysis of tuberculosis dynamical model and optimal control strategies based on case data in the United States.Appl. Math. Comput. 422 (2022), Article ID 126983, 21 pages. Zbl 1510.92219, MR 4376403, 10.1016/j.amc.2022.126983
Reference: [14] Liu, L., Wang, Y.: A mathematical study of a TB model with treatment interruptions and two latent periods.Comput. Math. Methods Med. 2014 (2014), Article ID 932186, 15 pages. Zbl 1307.92346, MR 3214480, 10.1155/2014/932186
Reference: [15] Marino, S., Hogue, I. B., Ray, C. J., Kirschner, D. E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology.J. Theor. Biol. 254 (2008), 178-196. Zbl 1400.92013, MR 2971156, 10.1016/j.jtbi.2008.04.011
Reference: [16] Maurya, J., Blyuss, K. B., Misra, A. K.: Modeling the impact of hospital beds and vaccination on the dynamics of an infectious disease.Math. Biosci. 368 (2024), Article ID 109133, 15 pages. Zbl 1539.92073, MR 4682551, 10.1016/j.mbs.2023.109133
Reference: [17] Mondal, P. K., Kar, T. K.: Optimal treatment control and bifurcation analysis of a tuberculosis model with effect of multiple re-infections.Int. J. Dyn. Control 5 (2017), 367-380. MR 3656606, 10.1007/s40435-015-0176-z
Reference: [18] Nandi, T. R., Saha, A. K., Roy, S.: Analysis of a fractional order epidemiological model for tuberculosis transmission with vaccination and reinfection.Sci. Rep. 14 (2024), Article ID 28290, 21 pages. 10.1038/s41598-024-73392-x
Reference: [19] Olayiwola, M. O., Adedokun, K. A.: A novel tuberculosis model incorporating a Caputo fractional derivative and treatment effect via the homotopy perturbation method.Bull. Natl. Res. Cent. 47 (2023), Article ID 121, 16 pages. 10.1186/s42269-023-01079-9
Reference: [20] K. Oshinubi, O. J. Peter, E. Addai, E. Mwizerwa, O. Babasola, I. V. Nwabufo, I. Sane, U. M. Adam, A. Adeniji, J. O. Agbaje: Mathematical modelling of tuberculosis outbreak in an East African country incorporating vaccination and treatment.Computation 11 (2023), Article ID 143, 21 pages. 10.3390/computation11070143
Reference: [21] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F.: The Mathematical Theory of Optimal Processes.Interscience Publishers, New York (1962). Zbl 0102.32001, MR 0166037
Reference: [22] Pooseh, S., Rodrigues, H. S., Torres, D. F. M.: Fractional derivatives in dengue epidemics.AIP Conf. Proc. 1389 (2011), 739-742. 10.1063/1.3636838
Reference: [23] Routh, E. J.: A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion: Being the Essay to Which the Adams Prize Was Adjudged in 1877 in the University of Cambridge.Macmillan, London (1877), Available at https://archive.org/details/atreatiseonstab00routgoog\kern0pt.
Reference: [24] Tilahun, G. T., Wolle, G. A., Tofik, M.: Eco-epidemiological model and analysis of potato leaf roll virus using fractional differential equation.Arab J. Basic Appl. Sci. 28 (2021), 41-50. 10.1080/25765299.2020.1865621
Reference: [25] Driessche, P. van den, Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.Math. Biosci. 180 (2002), 29-48. Zbl 1015.92036, MR 1950747, 10.1016/S0025-5564(02)00108-6
Reference: [26] Wojtak, W., Silva, C. J., Torres, D. F. M.: Uniform asymptotic stability of a fractional tuberculosis model.Math. Model. Nat. Phenom. 13 (2018), Article ID 9, 10 pages. Zbl 1407.92133, MR 3789859, 10.1051/mmnp/2018015
Reference: [27] Organization, World Health: Guidelines on the Management of Latent Tuberculosis Infection.World Health Organization, Geneva (2015), Available at https://www.who.int/publications/i/item/9789241548908\kern0pt.
Reference: [28] Organization, World Health: Global Tuberculosis Report.World Health Organization, Geneva (2023), Available at {\def{ }\let \relax \brokenlink{https://www.who.int/teams/global-programme-}{on-tuberculosis-and-lung-health/data}} (Accessed November 7, 2023)\kern0pt.
Reference: [29] Yang, Y., Li, J., Ma, Z., Liu, L.: Global stability of two models with incomplete treatment for tuberculosis.Chaos Solitons Fractals 43 (2010), 79-85. Zbl 1211.92038, MR 2738396, 10.1016/j.chaos.2010.09.002
Reference: [30] Yang, Y., Tang, S., Ren, X., Zhao, H., Guo, C.: Global stability and optimal control for a tuberculosis model with vaccination and treatment.Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 1009-1022. Zbl 1333.34081, MR 3503055, 10.3934/dcdsb.2016.21.1009
Reference: [31] Zhang, J., Li, Y., Zhang, X.: Mathematical modeling of tuberculosis data of China.J. Theor. Biol. 365 (2015), 159-163. Zbl 1314.92172, MR 3284848, 10.1016/j.jtbi.2014.10.019
Reference: [32] Ziv, E., Daley, C. L., Blower, S.: Potential public health impact of new tuberculosis vaccines.Emerging Infectious Diseases 10 (2004), 1529-1535. 10.3201/eid1009.030921
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo