Previous |  Up |  Next


periodic-Dirichlet problem; semilinear heat equation; superlinear growth
The existence of weak solution for periodic-Dirichlet problem to semilinear heat equations with superlinear growth non-linear term is treated.
[1] Brezis H., Nirenberg L.: Characterization of the range of some nonlinear operators and application to boundary value problem. Ann. Scuola Norm Pisa (4) 5 (1978), 225-326. MR 0513090
[2] Fučík S.: Solvability of Nonlinear Equations and Boundary Value Problems. Pediel, Dordrecht, 1980. MR 0620638
[3] Nkashama M.N., Willem M.: Periodic solutions of the boundary value problem for the nonlinear heat equation. Bull. Austral. Math. Soc. 29 (1984), 99-110. MR 0753565 | Zbl 0555.35062
[4] Sanchez L.: A note on periodic solutions of heat equation with a superlinear term. Nonlinear Functional Anal. and its Appl., S.P. Singh (ed.), D. Reidel Publ. Co., 1986. MR 0852596 | Zbl 0611.35046
[5] Šťastnová, Fučík S.: Note to periodic solvability of the boundary value problem for nonlinear heat equation. Comment. Math. Univ. Carolinae 18 (1977), 735-740. MR 0499739
[6] Vejvoda O. and al.: Partial Differential Equations, Time Periodic Solutions. Sijthoff Noordhoff, 1981.
Partner of
EuDML logo