Previous |  Up |  Next

Article

Keywords:
bounded DRl-monoid; weak Boolean product; prime spectrum
Summary:
In the paper we deal with weak Boolean products of bounded dually residuated $\ell $-monoids (DRl-monoids). Since bounded DRl-monoids are a generalization of pseudo MV-algebras and pseudo BL-algebras, the results can be immediately applied to these algebras.
References:
[1] P. Bahls, J. Cole, N. Galatos, P. Jipsen, C. Tsinakis: Cancellative residuated lattices. Algebra Univers. 50 (2003), 83–106. MR 2026830
[2] R. Balbes, P. Dwinger: Distributive Lattices. University of Missouri Press, Columbia, 1974. MR 0373985
[3] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
[4] R. L. O. Cignoli, A. Torrens: The poset of prime $\ell $ ideals of an Abelian $\ell $ group. J. Algebra 184 (1996), 604–612. MR 1409232
[5] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{BL}}$-algebras: Part I. Mult.-Valued Log. 8 (2002), 673–714. MR 1948853
[6] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{BL}}$-algebras: Part II. Mult.-Valued Log. 8 (2002), 717–750. MR 1948854
[7] A. Di Nola, G. Georgescu, L. Leuştean: Boolean products of $\mathop {\text{BL}}$-algebras. J. Math. Anal. Appl. 251 (2000), 106–131. MR 1790401
[8] N. Galatos, C. Tsinakis: Generalized MV-algebras. J. Algebra 283 (2005), 254–291. MR 2102083
[9] G. Georgescu, A. Iorgulescu: Pseudo $\mathop {\text{MV}}$-algebras. Mult.-Valued Log. 6 (2001), 95–135. MR 1817439
[10] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht, 1998. MR 1900263
[11] P. Hájek: Observations on non-commutative fuzzy logic. Soft Comput. 8 (2003), 38–43. Zbl 1075.03009
[12] P. Jipsen, C. Tsinakis: A survey of residuated lattices. Ordered Algebraic Structures (J. Martines, ed.), Kluwer Acad. Publ., Dordrecht, 2002, 19–56. MR 2083033
[13] T. Kovář: A general theory of dually residuated lattice-ordered monoids. Ph.D. Thesis, Palacký University, Olomouc, 1996.
[14] J. Kühr: Ideals of non-commutative $\mathop {\text{DRl}}$-monoids. Czech. Math. J. 55 (2005), 97–111.
[15] J. Kühr: Pseudo $\mathop {\text{BL}}$-algebras and $\mathop {\text{DRl}}$-monoids. Math. Bohem. 128 (2003), 199–208. MR 1995573
[16] J. Kühr: Prime ideals and polars in $\mathop {\text{DRl}}$-monoids and pseudo $\mathop {\text{BL}}$-algebras. Math. Slovaca 53 (2003), 233–246. MR 2025020
[17] J. Kühr: Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Mathematica 43 (2004), 105–112. MR 2124607 | Zbl 1071.06007
[18] J. Kühr: Spectral topologies of dually residuated lattice-ordered monoids. Math. Bohem. 129 (2004), 379–391. MR 2102611 | Zbl 1080.06023
[19] J. Kühr: Dually residuated lattice-ordered monoids. Ph.D. Thesis, Palacký University, Olomouc, 2003. Zbl 1066.06008
[20] J. Rachůnek: $\mathop {\text{DRl}}$-semigroups and $\mathop {\text{MV}}$-algebras. Czech. Math. J. 48 (1998), 365–372.
[21] J. Rachůnek: $\mathop {\text{MV}}$-algebras are categorically equivalent to a class of DRl$_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. MR 1667115
[22] J. Rachůnek: Ordered prime spectra of bounded $\mathop {\text{DRl}}$-monoids. Math. Bohem. 125 (2000), 505–509. MR 1802299
[23] J. Rachůnek: A duality between algebras of basic logic and bounded representable $\mathop {\text{DRl}}$-monoids. Math. Bohem. 126 (2001), 561–569. MR 1970259
[24] J. Rachůnek: A non-commutative generalization of $\mathop {\text{MV}}$-algebras. Czech. Math. J. 52 (2002), 255–273.
[25] J. Rachůnek: Prime spectra of non-commutative generalizations of $\mathop {\text{MV}}$-algebras. Algebra Univers. 48 (2002), 151–169. MR 1929902
[26] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. MR 0183797 | Zbl 0138.02104
Partner of
EuDML logo