[4] Baues, O., Cortés, V.: Symplectic Lie Groups I–III. arXiv:1307.1629.
[9] Drinfeld, V.G.: 
Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268 (2) (1983), 285–287, (Russian). 
MR 0688240 | 
Zbl 0526.58017 
[10] Etingof, P., Schiffman, O.: 
Lectures on Quantum Groups. Lect. Math. Phys., Int. Press, 1998. 
MR 1698405 
[12] Goyvaerts, I., Vercruysse, J.: 
A Note on the Categorification of Lie Algebras. Lie Theory and Its Applications in Physics, Springer Proceedings in Math. $\&$ Stat., 2013, pp. 541–550. 
MR 3070680 | 
Zbl 1280.17027 
[14] Helgason, S.: 
Differential Geometry, Lie groups, and Symmetric Spaces. Pure Appl. Math., 1978. 
MR 1834454 | 
Zbl 0451.53038 
[17] Kosmann-Schwarzbach, Y.: Poisson-Drinfel’d groups. Publ. Inst. Rech. Math. Av. 5 (12) (1987).
[18] Kosmann-Schwarzbach, Y.: 
Lie Bialgebras, Poisson Lie groups and dressing transformations. Integrability of nonlinear systems (Pondicherry, 1996), vol. 495, Lecture Notes in Phys., 1997, pp. 104–170. 
MR 1636293 | 
Zbl 1078.37517 
[19] Lee, J.: 
Introduction to Smooth Manifolds. Springer-Verlag, New York Inc., 2003. 
MR 1930091 
[24] Semenov-Tian-Shansky, M.A.: 
What is a classical $r$-matrix?. Funct. Anal. Appl. 17 (1983), 259–272. 
DOI 10.1007/BF01076717 
[25] Turaev, V.: Homotopy field theory in dimension 2 and group-algebras. arXiv.org:math/9910010, (1999).