26 Real functions
26Cxx Polynomials, rational functions
 
26C10 Polynomials: location of zeros (11 articles) 
- 
Andres, Jan; Čermák, Jan; Fedorková, Lucie:
		Piers Bohl stále inspirující.
		
			(Czech) [Piers Bohl Still Inspiring].
Pokroky matematiky, fyziky a astronomie,
		vol. 69
			(2024),
			issue 3,
		pp. 133-152
 
- 
Ndikubwayo, Innocent:
		Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation.
		
			(English).
Czechoslovak Mathematical Journal,
		vol. 70
			(2020),
			issue 3,
		pp. 793-804
 
- 
Kostov, Vladimir Petrov:
		Polynomials, sign patterns and Descartes' rule of signs.
		
			(English).
Mathematica Bohemica,
		vol. 144
			(2019),
			issue 1,
		pp. 39-67
 
- 
Kostov, Vladimir:
		On realizability of sign patterns by real polynomials.
		
			(English).
Czechoslovak Mathematical Journal,
		vol. 68
			(2018),
			issue 3,
		pp. 853-874
 
- 
Výborný, Rudolf:
		A simple proof of the Fundamental Theorem of Algebra.
		
			(English).
Mathematica Bohemica,
		vol. 135
			(2010),
			issue 1,
		pp. 57-61
 
- 
Šípek, Jan; Zítko, Jan:
		Algoritmy na výpočet kořenů polynomu.
		
			(Czech) [Algorithms for computation of polynomial zeros].
Pokroky matematiky, fyziky a astronomie,
		vol. 46
			(2001),
			issue 1,
		pp. 33-42
 
- 
Mastorakis, Nikos E.:
		An extension of the root perturbation $m$-dimensional polynomial factorization method.
		
			(English).
Kybernetika,
		vol. 32
			(1996),
			issue 5,
		pp. 443-453
 
- 
Nekvinda, Miloslav:
		On stable polynomials.
		
			(English).
Aplikace matematiky,
		vol. 34
			(1989),
			issue 3,
		pp. 177-196
 
- 
Komara, Imrich:
		Bounds of the roots of the real polynomial.
		
			(English).
Aplikace matematiky,
		vol. 32
			(1987),
			issue 1,
		pp. 9-15
 
- 
 
- 
Mařík, Jan:
		O polynomech, které mají jen reálné kořeny.
		
			(Czech) [On polynomials, all of whose zeros are real].
Časopis pro pěstování matematiky,
		vol. 89
			(1964),
			issue 1,
		pp. 5-9